Chapter 3

Sensation and Perception

Review of Ch 2

- Neurons
- Clinical Evidence
- Neurotransmission
- Neuroanatomy
- Neuroimaging
- PDP: Neural Network Models

rsyt. 362 - Spring 20

Sensation and Perception

- · Visual Sensation and Perception
- · Pattern Recognition
- Object Recognition and Agnosia
- Auditory Perception (skipped)

Visual Sensory Memory

Psyc 362 - Spring 1

1 aye 302 - Spring 201

Information Processing and Cognitive Science

 Atkinson Shiffrin "Standard Model" aka "Standard Theory"

Visual Fields

 Left visual field -> right hemisphere and vice-versa

Saccades

Saccades

- Saccades (fast movements)
- Fixation (eyes still)
- About 3-4 per second
- During Saccades, visual system is suppressed
 - change blindness

Visual Sensory Memory

- Show 12 items briefly
- Normal subjects report 4-5 items
- Stimuli duration not important
 - 5msec up to 500msec
- Sperling's experiment
 - Partial Report
 - 76% correct (out of 12) = about 9 items
 - Duration is important
 - after 1 second (1000 msec) 36%

Psyc 362 - Spring 2018

Loss of information

- Passive
 - decay, "forgetting"
- Active
 - interference
 - · backward masking

Psyc 362 - Spring 2

Sensory Memory: Motion & Time

- After 50 msec fixation, a word can be changed without subject awareness (Rayner et al. 1981)
- Stimuli can contain motion similar results (Finke & Freyd 1985)
 - sensory memory is not fixed snapshot
- Temporal Integration: Under 20 msec delay, items are seen as simultaneous (Loftus & Irwin 1998)

Review

- Visual System
 - Layers
 - Rods & Cones
 - wavelengths
 - colorblindness
 - Bipolar & Ganglion Cells
 - LGN/Cortex
- Perception
 - top down (blue dress example)
- Visual Sensory Memory
 - · decay vs interference

syc 362 - Spring 2018

Psyc 362 - Spring 2018

Pattern Recognition

Pattern Recognition

- A process of solving a problem:
 - · understand real-world from
 - retinal sensory data

Psyc 3

Recognition by Ċ Templates? G G Brain stores all G G possible variations of an object G Impractical and probably not how the brain works. G G

Feature Detection • Pandemonium model (Selfridge, 1959) Decision demon (decide which letter is present) 1 2 3 ... n Cognitive demons Try to match whole letter patterns Aa Bb Computational demons Try to match simple features O C > — Data or Image demons Encode the pattern Pyc. 342 - Syrrag 2018

Feature Detection Models

- Layers (from low level features to high level conceptions)
- · Parallel Processing
- Biological reality
 - e.g. Area 17 aka V1 in brain
- Summary: better than Template Models
- But
 - still purely Bottom-Up (Data-Driven)

Psyc 362 - Spring 2011

233

Perception under Conscious Control?	C. Search for <i>K</i>
Conscious vs Unconscious influences	ODUGQR QCDUGO CQOGRD QUGCDR URDGQO GRUQDO DUKGRO UCGROD DQRCGU QDOCGU CGUROQ OCDURQ UOCGQD RGQCOU GRUDQO GODUCQ

Connectionist Models

- Parallel ("massively parallel")
- Distributed
- Layers (often 3)
 - Input
 - Hidden
 - Output
- Units
 - positive, negative excitation
 - multiple inputs, one output
- Neural Network Modelling

rsyc so

How to train your dragon

Notes: The weight connecting node i in the input layer to node j in the hidden layer is denoted by Wji, and the weight connecting node j to the output node is represented by Vj

Psyc 362 - Spring 2018

Neural Network Training

- · The Delta rule
 - weights are adjusted by the amount of error
- · Back Propagation
 - · "Backward propagation of errors"
 - delta change changes go backwards from output layer to input layer

Psyc 362 - Spring 2018

241

Object Recognition and Agnosia

Recognition by Components

- Theory: complex objects are recognized by parts
- Geons (geometric ions)
 - · primitive geometrical forms

Psyc 362 - Sp

Evidence for RBC

- · Degraded patterns
 - · where is important
- Recoverable vs. Non-Recoverable items

Evidence against RBC

- Speed: can recognize whole faster than parts
- Neuroscience: agnosia loss of gestalt but retain RBC

Psyc 362 - Spring 20

Embodied Cognition

- When looking at or thinking of object...
- Neurons in motor and sensory systems show activity, as if a person was touching or using the object.

Review Pyc 342-Spring 2018

CogLab 3: Visual Search

- Pattern Recognition
- Search
- Selective Attention vs. Automatic
- Feature:
 - single (green)
 - conjunction (green + circle)

1 apr July - Spring 2010

Visual Search

- Conjunction requires serial search:
 - exhaustive when missing
 - terminating when present
- Single feature appears to be parallel and automatic

Visual Search

- Debriefing
 - Methods?
 - feature search
 - · conjunctive search
 - Predictions
 - · Feature Search: RT independent of N
 - Conjunctive Search:
 - present : varies with N
 - absent: varies with 2xN (exhaustive search)
 - · Robust? Limitations?

Clinical Syndrome: Agnosia

- A lack of
- Gnosis knowledge
- · Agnosia
 - Visual Object Agnosia
 - typically Left Hemisphere Damage
 - Prosopagnosia
 - Prosopos: face
 - typically Right Hemisphere Damage

Psyc 362 - Spring 20

Eyes Right!

- Mrs. S in her 60s, massive stroke affecting deep/posterior right cerebral hemisphere
- · Can not see items to her left
- · Can not conceive of going to the left
- Goes left by making 3 right turns
- "Hemi-inattention"

The man who mistook his wife for a hat

- Dr. P, professor of music
- Inability to recognize faces
 - · could recognize voice
- Couldn't tie own shoes
 - "That is my shoe?" (pointing to foot)
- Couldn't recognize object Gestalts
 - "A continuous surface, infolded on itself, five outpouchings" (Glove)
- Compensation
 - · songs for life activities

Psyc 362 - Spring 2018

Sensation & Perception: Summary

- Template model?
- · Connectionist models
 - layers
 - input, hidden, output
 - many-->few
 - · context effects
- Bottom up vs. Top Down?
 - Attentional Control
- Clinical Evidence
 - Agnosia

Psyc 362 - Spring 2018

265