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 ▶ Express the extent to which two measures are 
associated

 ▶ Explain what a scatter diagram is and how it is used
 ▶ Define a positive correlation and a negative correlation
 ▶ Discuss some of the differences between 

correlation and regression
 ▶ Tell how a regression line describes the relationship 

between two variables

 ▶ Discuss under which circumstances you would use 
the point biserial correlation, the phi coefficient, 
and the tetrachoric correlation

 ▶ Outline the procedure you would use to predict 
one score from the linear combination of several 
scores

 ▶ Explain factor analysis and how it is used

LE AR N I NG O B J EC TIVE S
When you have completed this chapter,1 you should be able to:

Correlation and Regression

C H A P T E R

3

1Portions of this chapter are taken from Basic Statistics for the Behavioral Sciences  
by Robert M. Kaplan (Newton, MA: Allyn & Bacon, 1987).
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64 CHAPTER 3 ● Correlation and Regression

A banner headline in an issue of a tabloid news report read, “Food Causes Most 
Marriage Problems.” The article talked about the “startling results of studies 
by doctors and marriage counselors.” Before we are willing to accept the mag-

azine’s conclusion, we must ask many questions. Did the tabloid report enough data 
for us to evaluate the hypothesis? Do we feel comfortable concluding that an associ-
ation between diet and divorce has been established?

There were many problems with the tabloid news report. The observation was 
based on the clinical experiences of some health practitioners who found that many 
couples who came in for counseling had poor diets. One major oversight was that 
there was no control group of people who were not having marriage problems. We 
do not know from the study whether couples with problems have poor diets more 
often than do people in general. Another problem is that neither diet nor marital 
happiness was measured in a systematic way. Thus, we are left with subjective 
opinions about the levels of these variables. Finally, we do not know the direction 
of the causation: Does poor diet cause unhappiness, or does unhappiness cause 
poor diet? Another possibility is that some other problem (such as stress) may cause 
both poor diet and unhappiness. So it turns out that the article was not based on 
any systematic study. It merely cited the opinions of some physicians and marriage 
counselors who felt that high levels of blood sugar are related to low energy levels, 
which in turn cause marital unhappiness.

This chapter focuses on one of the many issues raised in the report—the level of 
association between variables. The tabloid report tells us that diet and unhappiness 
are associated, but not to what extent. Is the association greater than we would 
expect by chance? Is it a strong or is it a weak association?

Lots of things seem to be related. For example, long-term stress is associated 
with heart disease, training is associated with good performance in athletics, and 
overeating is associated with indigestion. People often observe associations between 
events. For some events, the association is obvious. For example, the angle of the sun 
in the sky and the time of day are associated in a predictable way. This is because 
time was originally defined by the angle of the sun in the sky. Other associations 
are less obvious, such as the association between performing well on the Scholastic 
Aptitude Test SAT Mathematics Subject Test and obtaining good grades in college.

Sometimes, we do not know whether events are meaningfully associated with 
one another. If we do conclude that events are fundamentally associated, then we 
need to determine a precise index of the degree. This chapter discusses statistical 
procedures that allow us to make precise estimates of the degree to which variables 
are associated. These methods are quite important; we shall refer to them frequently 
in the remainder of this book. The indexes of association used most frequently in 
testing are correlation, regression, and multiple regression.

The Scatter Diagram
Before discussing the measures of association, we shall look at visual displays of the 
relationships between variables. In Chapter 2, we concentrated on univariate distri-
butions of scores, which involve only one variable for each individual under study. 
This chapter considers statistical methods for studying bivariate distributions, which 
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  CHAPTER 3 ● Correlation and Regression 65

have two scores for each individual. For example, when we study the relationship 
between test scores and classroom performance, we are dealing with a bivariate dis-
tribution. Each person has a score on the test and a score for classroom performance. 
We must examine the scores of all the individuals to know whether these two vari-
ables are associated.

The American Psychological Association’s Task Force on Statistical Inference 
has suggested that visual inspection of data is an important step in data analysis 
(Wilkinson, 1999) and there is increasing interest in data visualization (Cook, 
Lee, & Majumder, 2016). A scatter diagram is a picture of the relationship between 
two variables. An example of a scatter diagram is shown in Figure 3.1, which relates 
scores on a measure of anger for medical students to scores on the Center for 
Epidemiologic Studies Depression Scale CES-D. The axes in the figure represent 
the scales for two variables. Values of X for the anger inventory are shown on the 
horizontal axis, and values of Y for the CES-D are on the vertical axis. Each point on 
the scatter diagram shows where a particular individual scored on both X and Y. For 
example, one person had a score of 14 on the CES-D and a score of 21 on the anger 
inventory. This point is circled in the figure. You can locate it by finding 21 on the X 
axis and then going straight up to the level of 14 on the Y axis. Each point indicates 
the scores for X and Y for one individual. As you can see, the figure presents a lot 
of information. Each point represents the performance of one person who has been 
assessed on two measures.

The next sections present methods for summarizing the information in 
a scatter diagram by finding the straight line that comes closest to more points 
than any other line. One important reason for examining the scatter diagram is 
that the relationships between X and Y are not always best described by a straight 
line. For example, Figure 3.2 shows the hypothetical relationship between levels of 
antidepressant medication in the blood of depressed patients and the number of 
symptoms they report. However, the relationship is systematic. Patients who have 
too little or too much medication experience more symptoms than do those who 
get an intermediate amount. The methods of linear correlation or linear regression 
to be presented in this chapter are not appropriate for describing nonlinear 
relationships such as this.

FIGURE 3.1  
A scatter diagram. The 
circled point shows a 
person who had a score 
of 21 on X and 14 on Y.
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66 CHAPTER 3 ● Correlation and Regression

Correlation
In correlational analysis, we ask whether two variables covary. In other words, does Y 
get larger as X gets larger? For example, does the patient feel dizzier when the doctor 
increases the dose of a drug? Do people get more diseases when they are under more 
stress? Correlational analysis is designed primarily to examine linear relationships 
between variables. Although one can use correlational techniques to study nonlinear 
relationships, doing so lies beyond the scope of this book.2

A correlation coefficient is a mathematical index that describes the direction and 
magnitude of a relationship. Figure 3.3 shows three different types of relationships 
between variables. Part (a) of the figure demonstrates a positive correlation. This 
means that high scores on Y are associated with high scores on X, and low scores on 
Y correspond to low scores on X. Part (b) shows negative correlation. When there is a 
negative correlation, higher scores on Y are associated with lower scores on X, and lower 
scores on Y are associated with higher scores on X. This might describe the relationship 
between barbiturate use and amount of activity: The higher the drug dose, the less active 
the patients are. Part (c) of Figure 3.3 shows no correlation, or a situation in which the 
variables are not related. Here, scores on X do not give us information about scores on Y. 
An example of this sort of relationship is the lack of correlation between shoe size and IQ.

There are many ways to calculate a correlation coefficient. All involve pairs of 
observations: For each observation on one variable, there is an observation on one 
other variable for the same person.3 Appendix 3.1 (at the end of this chapter) offers 
an example of the calculation of a correlation. All methods of calculating a correlation 
coefficient are mathematically equivalent. Before we present methods for calculating 
the correlation coefficient, however, we shall discuss regression, the method on which 
correlation is based.

FIGURE 3.2  
A scatter diagram 
showing a nonlinear 
relationship.
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(From R. M. Kaplan & Grant, 2000).

2Readers who are interested in studying nonlinear relationships should review German and Hill (2007).
3The pairs of scores do not always need to be for a person. They might also be for a group, an institution, 
a team, and so on.
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  CHAPTER 3 ● Correlation and Regression 67

Regression
The Regression Line
We use correlation to assess the magnitude and direction of a relationship. A related 
technique, known as regression, is used to make predictions about scores on one vari-
able from knowledge of scores on another variable. These predictions are obtained 
from the regression line, which is defined as the best-fitting straight line through 
a set of points in a scatter diagram. It is found by using the principle of least squares, 
which minimizes the squared deviation around the regression line. Let us explain.

The mean is the point of least squares for any single variable. This means that 
the sum of the squared deviations around the mean will be less than it is around any 
value other than the mean. For example, consider the scores 5, 4, 3, 2, and 1. The 
mean is ΣXi>N 5 15>5 5 3. The squared deviation of each score around the mean 
can be found. For the score 5, the squared deviation is (523)2 5 4. For the score 4, 
it is (423)2 5 1. The score 3 is equal to the mean, so the squared deviation around 
the mean will be (323)2 5 0. By definition, the mean will always be the point of 
least squares.

The regression line is the running mean or the line of least squares in two 
dimensions or in the space created by two variables. Consider the situation shown 
in the scatter diagram in Figure 3.1. For each level of X (or point on the X scale), 
there is a distribution of scores on Y. In other words, we could find a mean of Y 
when X is 3, another mean of Y when X is 4, and so on. The least squares method in 
regression finds the straight line that comes as close to as many of these Y means as 
possible. In other words, it is the line for which the squared deviations around the 
line are at a minimum.

Before we get to the regression equation, we must define some of the terms it 
includes. The term on the left of the equation is Y′. This is the predicted value of Y. 
When we create the equation, we use observed values of Y and X. The equation 
is the result of the least squares procedure and shows the best linear relationship 
between X and Y. When the equation is available, we can take a score on X and plug 
it into the formula. What results is a predicted value of Y, or Y′.

The most important term in the equation is the regression coefficient, or b, which 
is the slope of the regression line. The regression coefficient can be expressed as the 
ratio of the sum of squares for the covariance to the sum of squares for X. Sum of 
squares is defined as the sum of the squared deviations around the mean. For X, this is 

Y

(a)
Positive Correlation

X

Y

(b)
Negative Correlation

X

Y

(c)
No Correlation

X

FIGURE 3.3  
Three hypothetical 
relationships: 
(a) positive correlation, 
(b) negative correlation, 
(c) no correlation.
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68 CHAPTER 3 ● Correlation and Regression

the sum of the squared deviations around the X variable. Covariance is used to express 
how much two measures covary, or vary together. To understand covariance, let’s look 
at the extreme case of the relationship between two identical sets of scores. In this 
case, there will be a perfect association. We know that we can create a new score that 
exactly repeats the scores on any one variable. If we created this new twin variable, 
then it would covary perfectly with the original variable. Regression analysis attempts 
to determine how similar the variance between two variables is by dividing the 
covariance by the average variance of each variable. The covariance is calculated from 
the cross products, or products of variations around each mean. Symbolically, this is

ΣXY 5 Σ 1X2X ) (Y2Y 2
The regression coefficient or slope is:

b 5
N1ΣXY 22 1ΣX 2 1ΣY 2

N ΣX 22 1ΣX 22
The slope describes how much change is expected in Y each time X increases 

by one unit. For example, Figure 3.4 shows a regression line with a slope of .67. 
In this figure, the difference between 1 and 2 in units of X is associated with an 
expected difference of .67 in units of Y (for X 5 1, Y 5 2.67 and for X 5 2, Y 5 3.34; 
3.34 2 2.67 5 .67). The regression coefficient is sometimes expressed in different 
notation. For example, the Greek b is often used for a population estimate of the 
regression coefficient.

The intercept, a, is the value of Y when X is 0. In other words, it is the point at 
which the regression line crosses the Y axis. This is shown in Figure 3.4. It is easy to 
find the intercept when we know the regression coefficient. The intercept is found 
by using the following formula:

a 5 Y2bX

The Best-Fitting Line
Correlational methods require finding the best-fitting line through a series of 
data points. In Figure 3.4, a regression line is shown that is based on a series of 
observations for particular individuals. Each individual had actually obtained a 
score on X and on Y. Take the example of someone who obtained a score of 4 on 

6

5

4

3

2

1

0

Y

8765432

Intercept 5 2

Slope 5 .67

Y 5 2 + .67X

10
X

FIGURE 3.4  
The regression 
equation. The slope a 
is the change in Y per 
unit change in X. The 
intercept b is value of Y 
when X is 0.
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  CHAPTER 3 ● Correlation and Regression 69

X and 6 on Y. The regression equation gives a predicted value for Y, denoted as Y′. 
Using the regression equation, we can calculate Y′ for this person. It is

 Y′ 5 21 .67X
so

 Y′ 5 21 .67142
 5 4.68

The actual and predicted scores on Y are rarely exactly the same. Suppose that the 
person actually received a score of 4 on Y and that the regression equation predicted 
that he or she would have a score of 4.68 on Y. The difference between the observed 
and predicted score (Y 2 Y′) is called the residual. The best-fitting line keeps 
residuals to a minimum. In other words, it minimizes the deviation between observed 
and predicted Y scores. Because residuals can be positive or negative and will cancel 
to 0 if averaged, the best-fitting line is most appropriately found by squaring each 
residual. Thus, the best-fitting line is obtained by keeping these squared residuals as 
small as possible. This is known as the principle of least squares. Formally, it is stated as

Σ 1Y2Y′22 is at a minimum
An example showing how to calculate a regression equation is given in 

Appendix 3.1. Whether or not you become proficient at calculating regression 
equations, you should learn to interpret them in order to be a good consumer of 
research information.

Table 3.1 and Figure 3.5 present an example of a regression problem. The 
data come from international studies on the relationship between price per pack of 
cigarettes and the number of cigarettes consumed per capita. There is considerable 
variability in the price per pack of cigarettes among European countries. The 
differences between countries are primarily defined by the level of taxation. Some 
countries, such as Norway, have high taxes on tobacco; therefore, the price per pack 
for cigarettes is much higher. Figure 3.5 shows the scatter diagram as it relates price 
to number of cigarettes consumed.

Although the relationship is not strong, there is a negative trend, which is defined 
by the regression equation. The intercept in this equation is 2764.6. This means 
the line intersects the Y axis at 2764.6. The intercept provides an estimate of the 
number of cigarettes that would be consumed if cigarettes were free. The regression 
coefficient for this model is b 5 2243.99 and tells how much cigarette consumption 
should decline for each dollar that is added to the price of a pack of cigarettes. In 
other words, this equation suggests that, on average, people will smoke 244 fewer 
cigarettes per year for each dollar added to the price of cigarettes. Thus, according 
to this simple model, adding a $2 tax to cigarettes would decrease consumption on 
average by approximately 488 cigarettes per year (Kaplan et al., 1995).

Correlation is a special case of regression in which the scores for both variables 
are in standardized, or Z, units. Having the scores in Z units is a nice convenience 
because it eliminates the need to find the intercept. In correlation, the intercept is 
always 0. Furthermore, the slope in correlation is easier to interpret because it is in a 
standardized unit. An example of how to calculate a correlation coefficient is given 
in Appendix 3.1. In calculating the correlation coefficient, we can bypass the step 
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70 CHAPTER 3 ● Correlation and Regression

of changing all the scores into Z units. This gets done as part of the calculation 
process. You may notice that Steps 1–13 are identical for calculating regression 
and correlation (Appendix 3.1). Psychological Testing in Everyday Life 3.1 gives a 
theoretical discussion of correlation and regression.

The Pearson product moment correlation coefficient is a ratio used to 
determine the degree of variation in one variable that can be estimated from 
knowledge about variation in the other variable. The correlation coefficient can take 
on any value from 21.0 to 1.0.

Table 3.2 gives the raw data for CES-D scores (X) and anger inventory scores 
(Y) for medical students. Try to find the regression of anger on CES-D and the 
correlation between these two measures. The correct answer is r 5 .82.

As you will see from Appendix 3.1, calculations of the correlation coefficient and the 
regression can be long and difficult. You may be able to avoid the many computational 
steps by using a calculator or one of the many calculation tools on the Internet. Many 
inexpensive pocket calculators automatically perform correlation and regression.

TABLE 3.1 Relationship of Cigarette Price and Consumption

Country Average cigarettes/year Price per pack ($)

1. Belgium 1990 1.54

2. Czechoslovakia 2520 1.90

3. Denmark 2110 3.60

4. Finland 1720 2.50

5. France 2400 0.80

6. GFR 2380 2.90

7. GDR 2340 1.78

8. Greece 3640 0.48

9. Hungary 3260 0.36

10. Iceland 3100 3.51

11. Ireland 2560 2.77

12. Italy 2460 1.21

13. Netherlands 1690 1.65

14. Norway 710 4.17

15. Portugal 1730 0.72

16. Romania 2110 0.37

17. Spain 2740 0.55

18. Sweden 1660 2.30

19. Switzerland 2960 1.84

20. Turkey 3000 0.54

21. USSR 2170 0.80

22. UK 2120 2.45
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Y 5 2764.6 2 243.99X R2 5 0.187FIGURE 3.5  
Scatter diagram 
relating price to number 
of cigarettes consumed.

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE

A More Theoretical Discussion of Correlation and Regression
The difference between correlation and regression is analogous to the 
 difference between standardized scores and raw scores. In correlation, we 
look at the relationship between variables when each one is transformed into 
standardized scores. In Chapter 2, standardized scores (Z scores) were defined 
as (X2X) >S. In correlation, both variables are in Z scores, so they both have 
a mean of 0. In other words, the mean for the two variables will always be 
the same. As a result of this convenience, the intercept will always be 0 (when 
X is 0, Y is also 0) and will drop out of the equation. The resulting equation for 
translating X into Y then becomes Y 5 rX. The correlation coefficient (r) is equal 
to the regression coefficient when both X and Y are measured in standardized 
units. In other words, the predicted value of Y equals X times the correlation 
between X and Y. If the correlation between X and Y is .80 and the standard-
ized (Z) score for the X variable is 1.0, then the predicted value of Y will be .80. 
Unless there is a perfect correlation (1.0 or 21.0), scores on Y will be predicted 
to be closer to the Y mean than scores on X will be to the X mean. A correla-
tion of .80 means that the prediction for Y is 80% as far from the mean as is 
the  observation for X. A correlation of .50 means that the predicted distance 
between the mean of Y and the predicted Y is half of the distance between the 
associated X and the mean of X. For example, if the Z score for X is 1.0, then X 
is one unit above the mean of X. If the correlation is .50, then we predict that Y 
will have a Z score of .50.

3.1

(continues)
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72 CHAPTER 3 ● Correlation and Regression

One benefit of using the correlation coefficient is that it has a reciprocal na-
ture. The correlation between X and Y will always be the same as the correlation 
between Y and X. For example, if the correlation between drug dose and activity 
is .68, the correlation between activity and drug dose is .68.

On the other hand, regression does not have this property. Regression is 
used to transform scores on one variable into estimated scores on the other. We 
often use regression to predict raw scores on Y on the basis of raw scores on X. 
For instance, we might seek an equation to predict a student’s grade point aver-
age (GPA) on the basis of his or her SAT score. Because regression uses the raw 
units of the variables, the reciprocal property does not hold. The coefficient  
that describes the regression of X on Y is usually not the same as the coefficient that 
describes the regression of Y on X.

The term regression was first used in 1885 by an extraordinary British 
 intellectual named Sir Francis Galton. Fond of describing social and political 
changes that occur over successive generations, Galton noted that extraordi-
narily tall men tended to have sons who were a little shorter than them and that 
unusually small men tended to have sons closer to the average height (but still 
shorter than average). Over time, individuals with all sorts of unusual char-
acteristics tended to produce offspring who were closer to the average. Galton 
thought of this as a regression toward mediocrity, an idea that became the  basis 
for a statistical procedure that described how scores tend to regress toward the 
mean. If a person is extreme on X, then regression predicts that he or she will 
be less extreme on Y. Karl Pearson developed the first statistical models of 
correlation and regression in the late 19th century.

Statistical Definition of Regression
Regression analysis shows how change in one variable is related to change in 
another variable. In psychological testing, we often use regression to determine 
whether changes in test scores are related to changes in performance. Do people 
who score higher on tests of manual dexterity perform better in dental school? 
Can IQ scores measured during high school predict monetary income 20 years 
later? Regression analysis and related correlational methods reveal the degree 
to which these variables are linearly related. In addition, they offer an equation 
that estimates scores on a criterion (such as dental-school grades) on the basis of 
scores on a predictor (such as manual dexterity).

In Chapter 2, we introduced the concept of variance. You might remember 
that variance was defined as the average squared deviation around the mean. We 
used the term sum of squares for the sum of squared deviations around the mean. 
Symbolically, this is

Σ 1X2X 22

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE (continued)3.1
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  CHAPTER 3 ● Correlation and Regression 73

The variance is the sum of squares divided by N 2 1. The formula for this is

S2X 5
Σ 1X2X 22

N21
We also gave some formulas for the variance of raw scores. The variance of 

X can be calculated from raw scores using the formula

S2X 5

ΣX 22
1ΣX 22

N
N21

If there is another variable, Y, then we can calculate the variance using a similar 
formula:

S2Y 5

ΣY 22
1ΣY 22

N
N21

To calculate regression, we need a term for the covariance. To calculate the 
covariance, we need to find the sum of cross products, which is defined as

ΣX Y 5 Σ 1X2X 2 1Y2Y 2
and the raw score formula, which is often used for calculation, is

ΣX Y2
1ΣX 2  1ΣY 2

N
The covariance is the sum of cross products divided by N 2 1.

Now look at the similarity of the formula for the covariance and the 
 formula for the variance:

 S2XY 5

ΣX Y2
1ΣX 2  1ΣY 2

N
N21

 S2X 5

ΣX 22
1ΣX 22

N
N21

Try substituting X for Y in the formula for the covariance. You should get

ΣX X2
1ΣX 2  1ΣX 2

N
N21

(continues)
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74 CHAPTER 3 ● Correlation and Regression

If you replace SXX with SX2 and (SX )(SX ) with (SX)2, you will see the 
relationship between variance and covariance:

ΣX 22
1ΣX 22

N
N21

In regression analysis, we examine the ratio of the covariance to the average 
of the variances for the two separate measures. This gives us an estimate of how 
much variance in one variable we can determine by knowing about the variation 
in the other variable.

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE (continued)3.1

Testing the Statistical Significance of a Correlation Coefficient
One of the most important questions in evaluating a correlation is whether it is 
larger than we would expect by chance. The correlation between two randomly cre-
ated variables will not always be 0.0. By chance alone, it is possible to observe a 
correlation higher or lower than 0.0. However, the expected value the correlation 
averaged over many randomly created data sets is 0.0, and we can estimate the prob-
ability that correlations of various magnitudes occurred by chance alone. We begin 
with the null hypothesis that there is no relationship between variables. The null 
hypothesis is rejected if there is evidence that the association between two variables 
is significantly different from 0. Correlation coefficients can be tested for statistical 
significance using the t distribution. The t distribution is not a single distribution 
(such as the Z distribution) but a family of distributions, each with its own degrees 
of freedom. The degrees of freedom (df  ) are defined as the sample size minus two, or 
N 2 2. The formula for calculating the t value is

t 5 rÄN22
12r 2

The significance of the t value—where, df 5 N 2 2 and N is the number of 
pairs—can then be obtained by using Appendix 3.1.

Let’s take one example of a correlation of .37 based on 50 pairs of observations. 
Using the formula, we obtain

 t 5 .37Ä 48
.86

 5 .3717.472
 5 2.76

Suppose we had stated the null hypothesis that the population association 
between these two variables is 0. Test statistics are used to estimate whether the 
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  CHAPTER 3 ● Correlation and Regression 75

TABLE 3.2 CES-D Correlation Example

X, anger 
inventory Y, CES-D X2 Y2 XY Predicted Residual

21 14 441 196 294 7.31 6.69

21 10 441 100 210 7.31 2.69

21 8 441 64 168 7.31 .69

27 8 729 64 216 11.35 23.35

43 26 1849 676 1118 22.14 3.86

24 0 576 0 0 9.33 29.33

36 14 1296 196 504 17.42 23.42

17 3 289 9 51 4.61 1.61

31 9 961 81 279 14.05 25.05

19 10 361 100 190 5.96 4.04

19 7 361 49 133 5.96 1.04

24 12 576 144 288 9.33 2.67

27 10 729 100 270 11.35 21.35

41 25 1681 625 1025 20.79 4.21

18 9 324 81 162 5.29 3.71

24 12 576 144 288 9.33 2.67

43 23 1849 529 989 22.14 .86

28 7 784 49 196 12.03 25.03

31 13 961 169 403 14.05 21.05

16 1 256 1 16 3.94 22.94

See Appendix 3.1 for definitions of steps.
Step 1: N 5 20
Step 2: ΣX 5 531
Step 3: ΣY 5 221
Step 4: ΣX2 5 15,481
Step 5: ΣY2 5 3377
Step 6: ΣXY 5 6800
Step 7: 281,961
Step 8: 48,841
Steps 9, 10, 11: 20(6800) 2 (531)(221) 5 18,649
Steps 12, 13: 20(15,481) 2 (531)(531) 5 27,659
Step 14: b 5 .67
Step 15: X 5 26.55
Step 16: Y 5 11.05
Steps 17, 18: a 5 6.85
Step 19: CES-D 5 26.85 1 .67(anger)
For correlation:
Step 16: 22, 741.93
Step 17 correlation: .82
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76 CHAPTER 3 ● Correlation and Regression

observed correlation based on samples is significantly different from 0. This would 
be tested against the alternative hypothesis that the association between the two 
measures is significantly different from 0 in a two-tailed test. A significance level of 
.05 is used. Formally, then, the hypothesis and alternative hypothesis are

H0 : r 5 0
H1 : r ≠ 0

Using the formula, we obtain a t value of 2.76 with 48 degrees of freedom. Accord-
ing to Appendix 3.1, this t value is sufficient to reject the null hypothesis. Thus, 
we  conclude that the association between these two variables was not the result 
of chance.

There are also statistical tables that give the critical values for r. One of these 
tables is included as Appendix 2. The table lists critical values of r for both the 
.05 and the .01 alpha levels according to degrees of freedom. For the correlation 
coefficient, df 5 N 2 2. Suppose, for example, that you want to determine whether 
a correlation coefficient of .45 is statistically significant for a sample of 20 subjects. 
The degrees of freedom would be 18 (20 2 2 5 18). According to Appendix 2, 
the critical value for the .05 level is .444 with 18 df. Because .45 exceeds .444, 
you would conclude that the chances of finding a correlation as large as the one 
observed by chance alone would be less than 5 in 100. However, the observed 
correlation is less than the criterion value for the .01 level (that would require .561 
with 18 df  ).

How to Interpret a Regression Plot
Regression plots are pictures that show the relationship between variables. A common 
use of correlation is to determine the criterion validity evidence for a test, or the 
relationship between a test score and some well-defined criterion. The association 
between a test of job aptitude and the criterion of actual performance on the job 
is an example of criterion validity evidence. The problems dealt with in studies of 
criterion validity evidence require one to predict some criterion score on the basis of 
a predictor or test score. Suppose that you want to build a test to predict how enjoy-
able someone will turn out to be as a date. If you selected your dates randomly and 
with no information about them in advance, then you might be best off just using 
normative information.

You might expect the distribution of enjoyableness of dates to be normal. In 
other words, some people are absolutely no fun for you to go out with, others are 
exceptionally enjoyable, and the great majority are somewhere between these two 
extremes. Figure 3.6 shows what a frequency distribution of enjoyableness of dates 
might look like. As you can see, the highest point, which shows where dates are most 
frequently classified, is the location of the average date.

If you had no other way of predicting how much you would like your dates, the 
safest prediction would be to pick this middle level of enjoyableness because it is the 
one observed most frequently. This is called normative because it uses information 
gained from representative groups. Knowing nothing else about an individual, you 
can make an educated guess that a person will be average in enjoyableness because 
past experience has demonstrated that the mean, or average, score is also the one 
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  CHAPTER 3 ● Correlation and Regression 77

observed most frequently. In other words, knowing about the average date gives you 
some information about what to expect from a particular date. But it is doubtful 
that you would really want to choose dates this way. You probably would rather use 
other information such as educational background, attitudes, and hobbies to predict 
a good date.

Most of us, in fact, use some system to help us make important personal choices. 
The systems we come up with, however, are never perfect, but they are better than using 
normative information alone. In regression studies, researchers develop equations that 
help them describe more precisely where tests fall between being perfect predictors and 
being no better than just using the normative information. This is done by graphing 
the relationship between test scores and the criterion. Then a mathematical procedure 
is used to find the straight line that comes as close to as many of the points as possible. 
(You may want to review this chapter’s earlier section on the regression line.)

Figure 3.7 shows the points on hypothetical scales of dating desirability and 
the enjoyableness of dates. The line through the points is the one that minimizes 
the squared distance between the line and the data points. In other words, the line 
is the one straight line that summarizes more about the relationship between dating 
desirability and enjoyableness than does any other straight line.

Figure 3.8 shows the hypothetical relationship between a test score and a 
criterion. Using this figure, you should be able to find the predicted value on the 
criterion variable by knowing the score on the test or the predictor. Here is how 
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FIGURE 3.6  
Hypothetical distribution 
of the enjoyableness 
of dates. Few dates are 
extremely enjoyable or 
extremely unenjoyable. 
The greatest number 
fall near the middle.

FIGURE 3.7  
Hypothetical 
relationship between 
dating desirability 
and the enjoyableness 
of dates. Each point 
summarizes the dating 
desirability score and 
the enjoyableness rating 
for a single subject. 
The line was derived 
from a mathematical 
procedure to come as 
close to as many points 
as possible.
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78 CHAPTER 3 ● Correlation and Regression

you read the graph. First, pick a particular score on the test—say, 8. Find 8 on the 
axis of the graph labeled “Test Score.” Now draw a line straight up until you hit the 
slanted line on the graph. This is the regression line. Now make a 90-degree left 
turn and draw another line until it hits the other axis, which is labeled “Criterion 
Score.” The dashed line in Figure 3.8 shows the course you should take. Now read 
the number on the criterion axis where your line has stopped. On the basis of 
information you gained by using the test, you would thus expect to obtain 7.4 as the 
criterion variable.

Notice that the line in Figure 3.8 is not at a 45° angle and that the two variables 
are measured in the same units. If it were at a 45° angle, then the test would be a 
perfect (or close to perfect) forecaster of the criterion. However, this is almost never 
the case in practice. Now, do the same exercise you did for the test score of 8 with 
test scores from the extremes of the distributions. Try the scores 0 and 10. You will 
find that the score of 10 for the test gives a criterion score of 8.95, and the test score 
of 0 gives a criterion score of 1.25. Notice how far apart 0 and 10 are on the test. 
Now look at how far apart 1.25 and 8.95 are on the criterion. You can see that using 
the test as a predictor is not as good as perfect prediction, but it is still better than 
using the normative information. If you had used only the normative information, 
you would have predicted that all scores would be the average score on the criterion. 
If there were perfect prediction, then the distance between 1.25 and 8.95 on the 
criterion would be the same as the distance between 0 and 10 on the test.

Figure 3.9 shows a variety of different regression slopes. Notice that the 
higher the standardized regression coefficient (b), the steeper the line. Now look 
at the regression line with a slope of 0. It is parallel to the “Test Score” axis and 
perpendicular to the “Criterion Score” axis. A regression line such as this shows that 
the test score tells us nothing about the criterion beyond the normative information. 
Whatever test score you choose, the criterion score will be the same—the average 
score on the criterion. The slope of 0 tells you that the test and the criterion are 
unrelated and that your best bet under these circumstances is to predict the average 
score on the criterion.

FIGURE 3.8  
Predicted relationship 
between a test score 
and a criterion. The 
dotted line shows 
how you should have 
obtained a predicted 
criterion score of 7.4 
from the test score of 8.
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  CHAPTER 3 ● Correlation and Regression 79

Now try to find the predicted score on the criterion for test scores of 11 and 3 
for several of the different slopes shown in Figure 3.9. Notice that the steeper the 
slope of the regression line, the farther apart the predicted scores on the criterion. 
Table 3.3 shows the predicted scores for all of the different slopes. You can use it to 
check your answers.

When the regression lines have slopes of 0 or nearly 0, it is best not to take any 
chances in forecasting the criterion. Instead, you should depend on the normative 
information and guess the mean of Y. As the slope becomes steeper, it makes more 
sense to take some chances and estimate that there will be differences in criterion scores.

12108640 2
Test Score

C
ri

te
ri

on
 S

co
re

12

10

8

6

4

2

0

b = .0

b = .2

b = .5

b = .8

b = 1.0FIGURE 3.9  
Regression lines with 
different standardized 
slopes.

TABLE 3.3  Expected Criterion Scores for Two Test Scores When Predicted 
from Regression Lines with Different Slopes

Test score Slope
Predicted  

criterion score

11 1.0 11.00

3 1.0 3.00

11 .8 9.90

3 .8 3.50

11 .5 8.25

3 .5 4.25

11 .2 6.60

3 .2 5.00

11 .0 5.50

3 .0 5.50
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80 CHAPTER 3 ● Correlation and Regression

Figure 3.9 is also instructive regarding psychological tests. For example, if SAT 
scores have a slope of 0.5 for predicting grades in college, this means that the relationship 
between the SAT and performance is defined by the “b 5 0.5” line. Using this sort of 
information, college administrators can infer that SAT scores may predict differences 
in college performance. However, because the slope is not steep, those predictions are 
not far from what they would get if they used the normative information.

Other Correlation Coefficients
The Pearson product moment correlation is only one of many types of correlation 
coefficients. It is the most commonly used because most often we want to find the 
correlation between two continuous variables. Continuous variables such as height, 
weight, and intelligence can take on any values over a range of values. But sometimes 
we want to find the correlations between variables scaled in other ways.

Spearman’s rho is a method of correlation for finding the association between 
two sets of ranks. The rho coefficient (r) is easy to calculate and is often used when 
the individuals in a sample can be ranked on two variables but their actual scores are 
not known or have a normal distribution.

One whole family of correlation coefficients involves dichotomous variables. 
Dichotomous variables have only two levels. Examples are yes-no, correct-incorrect, 
and male-female. Some dichotomous variables are called true dichotomous because 
they naturally form two categories. For example, gender is a true dichotomous 
variable. Other dichotomous variables are called artif icially dichotomous because they 
reflect an underlying continuous scale forced into a dichotomy. Passing or failing a 
bar examination is an example of such an artificial dichotomy; although many scores 
can be obtained, the examiners consider only pass and fail. The types of correlation 
coefficients used to find the relationship between dichotomous and continuous 
variables are shown in Table 3.4.

The biserial correlation expresses the relationship between a continuous 
variable and an artificial dichotomous variable. For example, the biserial correlation 

TABLE 3.4  Appropriate Correlation Coefficients for Relationships between 
Dichotomous and Continuous Variables*

Variable X

Variable Y Continuous
Artificial 
dichotomous

True  
dichotomous

Continuous Pearson r Biserial r Point biserial r

Artificial dichotomous Biserial r Tetrachoric r Phi

True dichotomous Point biserial r Phi Phi

*The entries in the table suggest which type of correlation coefficient is appropriate given the characteristics of the 
two variables. For example, if variable Y is continuous and variable X is true dichotomous, you would use the point 
biserial correlation.
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  CHAPTER 3 ● Correlation and Regression 81

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE

Formulas for Spearman’s Rho, the Point Biserial Correlation,  
and the Phi Coefficient

Spearman’s rho formula: r 5 12
6Σd 2i

N 323
where

r 5 Spearman’s rho coefficient
di  5  a subject’s rank order on variable 2 minus his or her rank  

order on variable 1
N 5 the number of paired ranks

When used: To find the association between pairs of observations, each 
 expressed in ranks.

Point biserial correlation formula: rpbis 5 c Y12Y
Sy

d Ä Px
12Px

where
rpbis 5 the point biserial correlation coefficient

X 5 a true dichotomous (two-choice) variable
Y  5 a continuous (multilevel) variable
Y1 5 the mean of Y for subjects have a “plus” score on X
P  5 the mean of Y for all subjects
Sy 5 the standard deviation for scores
Px 5 the proportion of subjects giving a “plus” score on X

3.2

might be used to assess the relationship between passing or failing the bar 
examination (artificial dichotomous variable) and GPA in law school (continuous 
variable). If the dichotomous variable had been “true” (such as gender), then we 
would use the point biserial correlation. For instance, the point biserial correlation 
would be used to find the relationship between gender and GPA. When both 
variables are dichotomous and at least one of the dichotomies is “true,” then the 
association between them can be estimated using the phi coeff icient. For example, 
the relationship between passing or failing the bar examination and gender 
could be estimated using the phi coefficient. If both dichotomous variables are 
artificial, we might use a special correlation coefficient known as the tetrachoric 
correlation. Among these special correlation coefficients, the point biserial, phi, 
and Spearman’s rho coefficients are probably used most often. The formulas  
for calculating these correlations are given in Psychological Testing in Everyday 
Life 3.2.

(continues)
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82 CHAPTER 3 ● Correlation and Regression

When used: To find the association between a dichotomous (two-choice) vari-
able and a continuous variable. For the true dichotomous variable, one of the 
two choices is arbitrarily designated as a “plus” response.

Phi coefficient formula: f 5
Pc2Px Py

Px112Px2Py 112Py2
where

f 5 the phi coefficient
Pc 5 the proportion in the “plus” category for both variables
Px 5 the proportion in the “plus” category for the first variable
Py 5 the proportion in the “plus” category for the second variable

When used: To find the association between two dichotomous (two-category) 
variables. A dichotomous variable might be yes/no or on/off. In each case, one of 
the two choices is arbitrarily chosen as a “plus” response. When you use phi, one 
of the variables must be “true” dichotomy (if both were “artificial,” the tetracho-
ric correlation would be more appropriate).

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE (continued)3.2

Terms and Issues in the Use of Correlation
When you use correlation or read studies that report correlational analysis, you will 
need to know the terminology. Some of the terms and issues you should be familiar 
with are residual, standard error of estimate, coeff icient of determination, coeff icient of 
alienation, shrinkage, cross validation, correlation—causation problem, and third vari-
able. Brief discussions of these terms and concepts follow.

Residual
A regression equation gives a predicted value of Y′ for each value of X. In addition 
to these predicted values, there are observed values of Y. The difference between the 
predicted and the observed values is called the residual. Symbolically, the residual is 
defined as  Y2Y′.

Consider the example of the CES-D. Earlier we calculated the regression 
equation that predicted CES-D scores from scores on the anger inventory. The 
equation suggested that predicted CES-D 5 26.85 1 .67 3 anger score. Let’s take 
the example of a person who had an anger score of 19 and an observed CES-D score 
of 7. The predicted CES-D score is

26.851 1.673192 5 5.88
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  CHAPTER 3 ● Correlation and Regression 83

In other words, the person had an observed score of 7 and a predicted score of 
5.88. The residual is4

725.88 5 1.12
In regression analysis, the residuals have certain properties. One important 

property is that the sum of the residuals always equals 0 [Σ(Y2Y′) 5 0]. In 
addition, the sum of the squared residuals is the smallest value according to the 
principle of least squares [Σ(Y2Y′)2 5 smallest value]. 

Standard Error of Estimate
Once we have obtained the residuals, we can find their standard deviation. However, 
in creating the regression equation, we have found two constants (a and b). Thus, we 
must use two degrees of freedom rather than one, as is usually the case in finding the 
standard deviation. The standard deviation of the residuals is known as the standard 
error of estimate, which is defined as

Syx 5 ÅΣ(Y2Y′)2

N22
The standard error of estimate is a measure of the accuracy of prediction. Prediction 
is most accurate when the standard error of estimate is relatively small. As it be-
comes larger, the prediction becomes less accurate.

Coefficient of Determination
The correlation coefficient squared is known as the coefficient of determination. 
This value tells us the proportion of the total variation in scores on Y that we know 
as a function of information about X. For example, if the correlation between the 
SAT score and performance in the first year of college is .40, then the coefficient 
of determination is .16. The calculation is simply .402 5 .16. This means that we 
can explain 16% of the variation in first-year college performance by knowing SAT 
scores. In the CES-D and anger example, the correlation is .82. Therefore, the coef-
ficient of determination is .67 (calculated as .822 5 .67), suggesting that 67% of the 
variance in CES-D can be accounted for by the anger score.

Coefficient of Alienation
The coefficient of alienation is a measure of nonassociation between two vari-
ables. This is calculated as "12r 2, where r is the coefficient of determination. For 
the SAT example, the coefficient of alienation is !12 .16 5 !.84 5 .92. This 
means that there is a high degree of nonassociation between SAT scores and col-
lege performance. In the CES-D and anger example, the coefficient of alienation is !12 .67 5 .57. Figure 3.10 shows the coefficient of determination and the coeffi-
cient of alienation represented in a pie chart.

4There is a small discrepancy between 1.12 and 1.04 for the example in Table 3.2, page 77. The differ-
ence is the result of rounding error.
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84 CHAPTER 3 ● Correlation and Regression

Shrinkage
Many times a regression equation is 
created on one group of subjects and 
then used to predict the performance 
of another group. One problem with 
regression analysis is that it takes ad-
vantage of chance relationships within 
a particular sample of subjects. Thus, 
there is a tendency to overestimate the 
relationship, particularly if the sample 
of subjects is small. Shrinkage is the 
amount of decrease observed when 
a regression equation is created for 
one population and then applied to 
another. Formulas are available to es-

timate the amount of shrinkage to expect given the characteristics of variance, co-
variance, and sample size (Gravetter & Wallnau, 2016; Wang & Thompson, 2007).

Here is an example of shrinkage. Say a regression equation is developed to 
predict first-year college GPAs on the basis of SAT scores. Although the proportion 
of variance in GPA might be fairly high for the original group, we can expect to 
account for a smaller proportion of the variance when the equation is used to predict 
GPA in the next year’s class. This decrease in the proportion of variance accounted 
for is the shrinkage.

Cross Validation
The best way to ensure that proper references are being made is to use the regression 
equation to predict performance in a group of subjects other than the ones to which 
the equation was applied. Then a standard error of estimate can be obtained for the 
relationship between the values predicted by the equation and the values actually 
observed. This process is known as cross validation.

The Correlation-Causation Problem
Just because two variables are correlated does not necessarily imply that one has 
caused the other (see Focused Example 3.1). For example, a correlation between ag-
gressive behavior and the number of hours spent viewing television does not mean 
that excessive viewing of television causes aggression. This relationship could mean 
that an aggressive child might prefer to watch a lot of television. There are many 
examples of misinterpretation of correlations. We know, for example, that physically 
active elderly people live longer than do those who are sedentary. However, we do 
not know if physical activity causes long life or if healthier people are more likely 
to be physically active. Usually, experiments are required to determine whether ma-
nipulation of one variable causes changes in another variable. A correlation alone 
does not prove causality, although it might lead to other research that is designed to 
establish the causal relationships between variables.

Explained
by SAT

16%

Not explained by SAT
84%

FIGURE 3.10  
Proportion of 
variance in first-year 
college performance 
explained by SAT score. 
Despite a significant 
relationship between 
SAT and college 
performance (r 5 .40), 
the coefficient of 
determination shows 
that only 16% of 
college performance 
is explained by SAT 
scores. The coefficient 
of alienation is .92, 
suggesting that most of 
the variance in college 
performance is not 
explained by SAT scores.
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  CHAPTER 3 ● Correlation and Regression 85

FOCUSED EXAMPLE

The Danger of Inferring Causation from Correlation
A newspaper article once rated 130 job categories 
for stressfulness by examining Tennessee hospi-
tal and death records for evidence of stress-related 
diseases such as heart attacks, ulcers, arthritis, and 
mental disorders. The 12 highest and the 12 lowest 
jobs are listed in the table to the right.

The article advises readers to avoid the “most 
stressful” job categories. The evidence, however, may 
not warrant the advice offered in the article. Although 
certain diseases may be associated with particular oc-
cupations, holding these jobs does not necessarily 
cause the illnesses. Other explanations abound. For 
example, people with a propensity for heart attacks 
and ulcers might tend to select jobs as unskilled la-
borers or secretaries. Thus, the direction of causation 
might be that a health condition causes job selection 
rather than the reverse. Another possibility involves 
a third variable, some other factor that causes the 
apparent relationship between job and health. For 
example, a certain income level might cause both 
stress and illness. Finally, wealthy people tend to have 
better health than poor people. Impoverished condi-
tions may cause a person to accept certain jobs and 
also to have more diseases.

These three possible explanations are dia-
grammed in the right-hand column. An arrow in-
dicates a causal connection. In this example, we are 
not ruling out the possibility that jobs cause illness. In 
fact, it is quite plausible. However, because the nature 
of the evidence is correlational, we cannot say with 
certainty that a job causes illness.

3.1

Most Stressful Least Stressful

 1. Unskilled laborer  1. Clothing sewer

 2. Secretary  2. Garment checker

 3. Assembly-line 
inspector

 3. Stock clerk

 4. Clinical lab technician  4. Skilled craftsperson

 5. Office manager  5. Housekeeper

 6. Foreperson  6. Farm laborer

 7. Manager/administrator  7. Heavy equipment 
operator

 8. Waiter  8. Freight handler

 9. Factory machine 
operator

 9. Child-care worker

 10. Farm owner  10. Factory package 
wrapper

 11. Miner  11. College professor

 12. House painter  12. Personnel worker

Job ➝ Illness Illnes ➝ Job Economic Status

Job  Illness
Job causes 
illness 

Tendency 
toward illness 
causes people 
to choose  
certain jobs

Economic status 
(third variable) 
causes job  
selection and 
illness

Third Variable Explanation
There are other possible explanations for the observed relationship between televi-
sion viewing and aggressive behavior. One is that some third variable, such as poor 
social adjustment, causes both. Thus, the apparent relationship between viewing and 
aggression actually might be the result of some variable not included in the analy-
sis. In the example of the relationship between physical activity and life expectancy, 
chronic disease may cause both sedentary lifestyle and shortened life expectancy. 
We usually refer to this external influence as a third variable.
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86 CHAPTER 3 ● Correlation and Regression

Restricted Range
Correlation and regression use variability on one variable to explain variability on 
a second variable. In this chapter, we use many different examples such as the re-
lationship between smoking and the price of a pack of cigarettes, the relationship 
between anger and depression, and the relationship between dating desirability and 
satisfaction. In each of these cases, there was meaningful variability on each of the 
two variables under study. However, there are circumstances in which the ranges of 
variability are restricted. Imagine, for example, that you were attempting to study 
the relationship between scores on the Graduate Record Examination GRE quan-
titative test and performance during the first year of graduate school in the math 
department of an elite Ivy League university. No students had been admitted to the 
program with GRE verbal scores less than 700. Further, most grades given in the 
graduate school were A’s. Under these circumstances, it might be extremely difficult 
to demonstrate a relationship even though a true underlying relationship may exist.

This is illustrated in Figure 3.11. The squares in the hypothetical example 
represent the relationship between SAT quantitative and graduate school GPA 
across all potential students. For all students, the correlation is 0.53. The open 
circles in the figure show the same relationship for the elite group of students under 
consideration. Because the elite students (closed circles in Figure 3.11) do not vary 
much on GRE quantitative, it is difficult to observe significant correlation between 
GRE quantitative (GRE-Q) and any other variable. In this example, the correlation 
is 0.08. This is called the restricted range problem. Correlation requires variability. 
If the variability is restricted, then significant correlations are difficult to find.

All Students
Elite Program

GRE-Q

G
PA

4.0

3.8

3.6

3.4

3.2

3.0

2.8

2.6

400 500 600 700 800
2.4

FIGURE 3.11  
Hypothetical 
relationship between 
GRE-Q and GPA for 
all students and for 
students in elite 
program.
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  CHAPTER 3 ● Correlation and Regression 87

Multivariate Analysis (Optional)
Multivariate analysis considers the relationship among combinations of three or 
more variables. For example, the prediction of success in the first year of college 
from the linear combination of SAT verbal and quantitative scores is a problem for 
multivariate analysis. However, because the field of multivariate analysis requires an 
understanding of linear and matrix algebra, a detailed discussion of it lies beyond the 
scope of this book.

On the other hand, you should have at least a general idea of what the different 
common testing methods entail. This section will familiarize you with some of the 
multivariate analysis terminology. It will also help you identify the situations in 
which some of the different multivariate methods are used. Several references are 
available in case you would like to learn more about the technical details (Brown, 
2015; Gravetter & Wallnau, 2016; Vogt & Johnson, 2015).

General Approach
The correlational techniques presented to this point describe the relationship be-
tween only two variables such as stress and illness. To understand more fully the 
causes of illness, we need to consider many potential factors besides stress. Multi-
variate analysis allows us to study the relationship between many predictors and one 
outcome, as well as the relationship among the predictors.

Multivariate methods differ in the number and kind of predictor variables they 
use. All of these methods transform groups of variables into linear combinations. A 
linear combination of variables is a weighted composite of the original variables. The 
weighting system combines the variables in order to achieve some goal. Multivariate 
techniques differ according to the goal they are trying to achieve.

A linear combination of variables looks like this:
Y′ 5 a1b1 X11b2 X21b3 X31c1bk Xk

where Y′ is the predicted value of Y, a is a constant, X1 to Xk are variables and there 
are k such variables, and the b’s are regression coefficients. If you feel anxious about 
such a complex-looking equation, there is no need to panic. Actually, this equation 
describes something similar to what was presented in the section on regression. The 
difference is that instead of relating Y to X, we are now dealing with a linear combi-
nation of X’s. The whole right side of the equation creates a new composite variable 
by transforming a set of predictor variables.

An Example Using Multiple Regression
Suppose we want to predict success in law school from three variables: undergrad-
uate GPA, rating by former professors, and age. This type of multivariate analysis is 
called multiple regression, and the goal of the analysis is to find the linear combina-
tion of the three variables that provides the best prediction of law school success. We 
find the correlation between the criterion (law school GPA) and some composite of 
the predictors (undergraduate GPA plus professor rating plus age). The combina-
tion of the three predictors, however, is not just the sum of the three scores. Instead, 
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88 CHAPTER 3 ● Correlation and Regression

we program the computer to find a specific way of adding the predictors that will 
make the correlation between the composite and the criterion as high as possible. A 
weighted composite might look something like this:

 law school GPA 5 .80 (Z scores of undergraduate GPA)
 1 .54 (Z scores of professor ratings)
 1 .03 (Z scores of  age)

This example suggests that undergraduate GPA is given more weight in the 
prediction of law school GPA than are the other variables. The undergraduate GPA 
is multiplied by .80, whereas the other variables are multiplied by much smaller 
coefficients. Age is multiplied by only .03, which is almost no contribution. This is 
because .03 times any Z score for age will give a number that is nearly 0; in effect, we 
would be adding 0 to the composite.

The reason for using Z scores for the three predictors is that the coefficients 
in the linear composite are greatly affected by the range of values taken on by the 
variables. GPA is measured on a scale from 0 to 4.0, whereas the range in age might 
be 21 to 70. To compare the coefficients to one another, we need to transform all the 
variables into similar units. This is accomplished by using Z scores (see Chapter 2). 
When the variables are expressed in Z units, the coefficients, or weights for the 
variables, are known as standardized regression coeff icients (sometimes called B’s or 
betas). There are also some cases in which we would want to use the variables’ original 
units. For example, we sometimes want to find an equation we can use to estimate 
someone’s predicted level of success on the basis of personal characteristics, and we 
do not want to bother changing these characteristics into Z units. When we do this, 
the weights in the model are called raw regression coeff icients (sometimes called b’s).

Before moving on, we should caution you about interpreting regression 
coefficients. Besides reflecting the relationship between a particular variable and 
the criterion, the coefficients are affected by the relationship among the predictor 
variables. Be careful when the predictor variables are highly correlated with one 
another. Two predictor variables that are highly correlated with the criterion will not 
both have large regression coefficients if they are highly correlated with each other 
as well. For example, suppose that undergraduate GPA and the professors’ rating are 
both highly correlated with law school GPA. However, these two predictors also are 
highly correlated with each other. In effect, the two measures seem to be of the same 
thing (which would not be surprising, because the professors assigned the grades). 
As such, professors’ rating may get a lower regression coefficient because some of 
its predictive power is already taken into consideration through its association with 
undergraduate GPA. We can only interpret regression coefficients confidently when 
the predictor variables do not overlap and are uncorrected. They may do so when the 
predictors are uncorrected.

Discriminant Analysis
Multiple regression is appropriate when the criterion variable is continuous (not 
nominal). However, there are many cases in testing where the criterion is a set of cat-
egories. For example, we often want to know the linear combination of variables that 
differentiates passing from failing. When the task is to find the linear combination 
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  CHAPTER 3 ● Correlation and Regression 89

of variables that provides a maximum discrimination between categories, the appro-
priate multivariate method is discriminant analysis. An example of discriminant 
analysis involves attempts to determine whether a set of measures predicts success or 
failure on a particular performance evaluation.

Sometimes we want to determine the categorization in more than two 
categories. To accomplish this, we use multiple discriminant analysis.

Discriminant analysis has many advantages in the field of test construction. One 
approach to test construction is to identify two groups of people who represent two 
distinct categories of some trait. For example, say that two groups of children are 
classified as “language disabled” and “normal.” After a variety of items are presented, 
discriminant analysis is used to find the linear combination of items that best accounts 
for differences between the two groups. With this information, researchers could 
develop new tests to help diagnose language impairment. This information might also 
provide insight into the nature of the problem and eventually lead to better treatments.

Factor Analysis
Discriminant analysis and multiple regression analysis find linear combinations of 
variables that maximize the prediction of some criterion. Factor analysis is used to 
study the interrelationships among a set of variables without reference to a crite-
rion. You might think of factor analysis as a data-reduction technique. When we 
have responses to a large number of items or a large number of tests, we often want 
to reduce all this information to more manageable chunks. In Figure 3.1, we pre-
sented a two-dimensional scatter diagram. The task in correlation is to find the 
best-fitting line through the space created by these two dimensions. As we add more 
variables in multivariate analysis, we increase the number of dimensions. For exam-
ple, a three-dimensional plot is shown in Figure 3.12. You can use your imagination 

to visualize what a larger set of dimensions would look like. Some people 
claim they can visualize more than three dimensions, while others feel they 
cannot. In any case, consider that points are plotted in the domain created 
by a given dimension.

In factor analysis, we first create a matrix that shows the correlation 
between every variable and every other variable. Then we find the linear 
combinations, or principal components, of the variables that describe 
as many of the interrelationships among the variables as possible. We 
can find as many principal components as there are variables. However, 
each principal component is extracted according to mathematical rules 
that make it independent of or uncorrected with the other principal 
components. The first component will be the most successful in describing 

the variation among the variables, with each succeeding component somewhat less 
successful. Thus, we often decide to examine only a few components that account for 
larger proportions of the variation. Technically, principal components analysis and 
true factor analysis differ in how the correlation matrix is created. Even so, principal 
components are often called factors.

Once the linear combinations or principal components have been found, we can 
find the correlation between the original items and the factors. These correlations 
are called factor loadings. The expression “item 7 loaded highly on factor I” means 

FIGURE 3.12  
A three-dimensional 
scatter plot might be 
represented by this box. 
In addition to plotting 
points on the X and Y 
axes, we must locate 
them in relation to a 
third Z axis.

Y

X

Z
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90 CHAPTER 3 ● Correlation and Regression

FOCUSED EXAMPLE3.2

The Factors of Trust
Rotter (1967) described a scale for the measure-
ment of interpersonal trust. Trust was defined  
as “an expectancy held by an individual or a group 
that the word, promise, verbal or written state-
ment of another individual or group can be relied  
upon” (p. 651). However, after the publication of  
the original trust ar ticle,  several authors re-
ported that trust seems to be composed of sev-
eral independent factors (Chun & Campbell, 1974;  
Kaplan, 1973; Wright & Tedeschi, 1975). In each case, 
the items were given to a large group of people, 
and the results were subjected to factor analysis. 
This procedure reduces the many items down to a 
smaller number of factors, or linear combinations 
of the original items. Then item loadings, or the cor-
relations of the original items with the factors, are 
studied in order to name the factors. The table that 
follows shows the loadings of the items on three of 
the factors (Kaplan, 1973).

Once they have obtained the factor loadings, 
 researchers must attempt to name the factors by ex-
amining which items load highly on them. In this case, 
an item was used to help interpret a factor if its item 
loading on the factor was greater than .35 or less than 
2.35. Three factors of trust were found.

Factor I: Institutional trust. This represented trust 
toward major social agents in society. It included items 
regarding the competence of politicians, such as “This 
country has a dark future unless we can attract better 
people into politics” (2.67). Many of the items con-
veyed the idea of misrepresentation of public events 
by either the government or the mass media. For ex-
ample, some items with high loadings were “Most 
people would be horrified if they knew how much 
news the public hears and sees is distorted” (2.69) and 

“Even though we have reports in newspapers, radio, 
and TV, it is hard to get objective accounts of public 
events” (2.67).

Factor II: Sincerity. Items loading highly on sincer-
ity tended to focus on the perceived sincerity of others. 
These items included “Most idealists are sincere and 
usually practice what they preach” (.62) and “Most peo-
ple answer public opinion polls honestly” (.58). Nearly 
all the items with high loadings on the second factor 
began with the word “most.” Because of this loose 
wording, it would be possible for people to agree 
with the items because they believe in the sincerity of 
most people in a given group but still feel little trust 
for the group because of a few “rotten eggs.” Thus, a 
woman could believe most car repairers are sincere 
but still service her car herself because she fears being 
overcharged.

Factor III: Caution. This contained items that ex-
pressed fear that some people will take advantage of 
others, such as “In dealing with strangers, one is better 
off being cautious until they have provided evidence 
that they are trustworthy” (.74) and “In these compet-
itive times you have to be alert or someone is likely to 
take advantage of you” (.53). Note that caution appears 
to be independent of perceived sincerity.

The data imply that generalized trust may be 
composed of several dimensions. It also implies that 
focusing on specific components of trust rather than 
the generalized case will likely help researchers the 
most in using this trust scale.

Focused Example adapted from Rotter (1967); table taken from 
Kaplan (1973).

there is a high correlation between item 7 and the first principal component. By 
examining which variables load highly on each factor, we can start interpreting the 
meanings of the factors. Focused Example 3.2 shows how the meanings of various 
factors in a scale on interpersonal trust are evaluated.

Factor analysis is a complex and technical method with many options the user 
must learn about. For example, users frequently use methods that help them get a 
clearer picture of the meaning of the components by transforming the variables in 
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  CHAPTER 3 ● Correlation and Regression 91

FOCUSED EXAMPLE

Loading factor

Item number Item I II III

A. Items with high loadings on institutional factor
 4. This country has a dark future unless we can attract better people into politics. 2.67 2.12 2.06
 5. Fear of social disgrace or punishment rather than conscience prevents most people 

from breaking the law.
2.54 .02 2.06

 13. The United Nations will never be an effective force in keeping world peace. 2.41 .09 2.21
 16. The judiciary is a place where we can all get unbiased treatment. .37 .23 .00
 19. Most people would be horrified if they knew how much news the public hears and 

sees is distorted.
2.69 .18 .28

 21. Most elected public officials are really sincere in their campaign promises. .44 .17 2.02
 24. Even though we have reports in newspapers, radio, and TV, it is hard to get objective 

accounts of public events.
2.67 2.08 .00

 28. If we really knew what was going on in international politics, the public would have 
more reason to be more frightened than it now seems to be.

2.49 .01 .24

 33. Many major national sports contests are fixed in one way or another. 2.55 2.04 .28

B. Items with high loadings on sincerity factor
 1. Hypocrisy is on the increase in our society. .09 2.52 .08
 12. Most students in school would not cheat even if they were sure of getting away 

with it.
.29 .45 .07

 27. Most experts can be relied upon to tell the truth about the limits of their knowledge. .20 .66 .20
 34. Most idealists are sincere and usually practice what they preach. .12 .62 2.20
 38. Most repair persons will not overcharge even if they think you are ignorant of their 

specialty.
.11 .48 2.35

 44. Most people answer public opinion polls honestly. .04 .58 .16

C. Items with high loadings on caution factor
 2. In dealing with strangers, one is better off being cautious until they have 

provided evidence that they are trustworthy.
2.22 2.03 .74

 7. Using the honor system of not having a teacher present during examinations would 
probably result in increased cheating.

.13 .08 .45

 32. In these competitive times, you have to be alert or someone is likely to take 
advantage of you.

2.12 2.01 .53

 42. A large share of the accident claims filed against insurance companies are phony. 2.07 2.14 .57

a way that pushes the factor loadings toward the high or the low extreme. Because 
these transformational methods involve rotating the axes in the space created by 
the factors, they are called methods of rotation. Researchers have many options for 
transforming variables. They can choose among several methods of rotation, and 
they can explore the many characteristics of the matrix originally used in their 
analyses. If you are interested, several books discuss factor analysis methods in great 
detail (Brown, 2015; Kline, 2015).
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92 CHAPTER 3 ● Correlation and Regression

Summary
This chapter began with a discussion of a claim made in a grocery store tabloid that 
poor diet causes marital problems. Actually, there was no specific evidence that diet 
causes the problems—only that diet and marital difficulties are associated. However, 
the Enquirer failed to specify the exact strength of the association. The rest of the 
chapter was designed to help you be more specific than the Enquirer by learning to 
specify associations with precise mathematical indexes known as correlation coefficients.

First, we presented pictures of the association between two variables; these pic-
tures are called scatter diagrams. Second, we presented a method for finding a linear 
equation to describe the relationship between two variables. This regression method 
uses the data in raw units. The results of regression analysis are two constants: A slope 
describes the degree of relatedness between the variables, and an intercept gives the 
value of the Y variable when the X variable is 0. When both of the variables are in 
standardized or Z units, the intercept is always 0 and drops out of the equation. In this 
unique situation, we solve for only one constant, which is r, or the correlation coefficient.

When using correlational methods, we must take many things into consider-
ation. For example, correlation does not mean the same thing as causation. In the 
case of the National Enquirer article, the observed correlation between diet and 
problems in marriage may mean that diet causes the personal difficulties. However, 
it may also mean that marriage problems cause poor eating habits or that some third 
variable causes both diet habits and marital problems. In addition to the difficulties 
associated with causation, we must always consider the strength of the correlational 
relationship. The coeff icient of determination describes the percentage of variation in 
one variable that is known on the basis of its association with another variable. The 
coeff icient of alienation is an index of what is not known from information about the 
other variable.

A regression line is the best-fitting straight line through a set of points in a scat-
ter diagram. The regression line is described by a mathematical index known as the 
regression equation. The regression coeff icient is the ratio of covariance to variance and 
is also known as the slope of the regression line. The regression coefficient describes 
how much change is expected in the Y variable each time the X variable increases 
by one unit. Other concepts discussed were the intercept, the residual (the difference 
between the predicted value given by a regression equation and the observed value), 
and the standard error of estimate (the standard deviation of the residuals obtained 
from the regression equation).

The field of multivariate analysis involves a complicated but important set of 
methods for studying the relationships among many variables. Multiple regression is 
a multivariate method for studying the relationship between one criterion variable 
and two or more predictor variables. A similar method known as discriminant anal-
ysis is used to study the relationship between a categorical criterion and two or more 
predictors. Factor analysis is another multivariate method for reducing a large set of 
variables down to a smaller set of composite variables.

Correlational methods are the most commonly used statistical techniques in the 
testing field. The concepts presented in this overview will be referred to throughout 
the rest of this book.
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  CHAPTER 3 ● Correlation and Regression 93

APPENDIX 3.1: 
Calculation of a Regression Equation and a Correlation Coefficient

In this appendix, we consider the relationship between team performance and  
payroll for teams in baseball’s National League. Data used here are from the 2016 sea-
son and available on the Internet at www.espn.com. The 2016 season was of particular 
interest to baseball fans because the World Series pitted the Chicago Cubs with a pay-
roll of more than $154 million against the Cleveland Indians with a payroll of a mere 
$74 million. The Cubs/Indians won the Series, raising the question of whether there 
is a relationship between expenditure and performance of professional baseball teams.

In this example, payroll for National League teams is measured as mean player 
salary (expressed in millions of dollars) whereas performance is measured by the num-
ber of games won1. The data are shown in Table 3.5 and summarized in Figure 3.13.  
Each dot in the figure represents one team. In 2016, there was a positive relationship 
between payroll and performance. In other words, teams with higher median sala-
ries had better performance. As Figure 3.13 indicates, each increase in expenditure is 

TABLE 3.5  Games Won and Median Salaries for Teams in Baseball’s National

Team

Average  
Salary  

(X)

Games  
Won  

(Y) X 2 Y 2 XY

Dodgers $8.85 91 $78.35 8,281 805.49 

Giants $6.89 87 $47.47 7,569 599.44 

Cubs $6.18 103 $38.23 10,609 636.85 

Cardinals $5.72 86 $32.74 7,396 492.10 

Nationals $5.67 95 $32.10 9,025 538.28 

Mets $5.36 87 $28.68 7,569 465.93 

Rockies $4.51 75 $20.30 5,625 337.94 

Pirates $4.15 78 $17.23 6,084 323.79 

Padres $4.06 68 $16.46 4,624 275.88 

Reds $3.60 68 $12.95 4,624 244.68 

Diamondbacks $3.57 69 $12.75 4,761 246.37 

Phillies $3.36 71 $11.28 5,041 238.50 

Marlins $3.09 79 $9.56 6,241 244.31 

Brewers $2.77 73 $7.68 5,329 202.31 

Braves $2.76 68 $7.62 4,624 187.70 

SUM (∑) $70.53 1,198 373.42 97,402 5,839.57 

1In this example we use total payroll divided by 25, which is the number of players allowed on the roster.  
Some of the clubs pay more than 25 players.  This may explain why estimates of average salary differ in 
different data sets.

98137_ch03_rev02_063-098.indd   93 11/15/16   6:53 PM

Not For Sale

©
 2

01
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

R
ig

ht
s R

es
er

ve
d.

 T
hi

s c
on

te
nt

 is
 n

ot
 y

et
 fi

na
l a

nd
 C

en
ga

ge
 L

ea
rn

in
g 

do
es

 n
ot

 g
ua

ra
nt

ee
 th

is
 p

ag
e 

w
ill

 c
on

ta
in

 c
ur

re
nt

 m
at

er
ia

l o
r m

at
ch

 th
e 

pu
bl

is
he

d 
pr

od
uc

t.



94 CHAPTER 3 ● Correlation and Regression

associated with an increase in performance. The regression coefficient (4.94) suggests 
that for each million dollar increase in mean salary, the team’s performance increases by 
an average of 4.94 games per season. We also did the same exercise for total payroll. In 
2016 the Los Angeles Dodgers had the highest payroll in the National League, at $221 
million. In contrast, the Atlanta Brave had a total payroll of $69 million. The correla-
tion between total payroll and games won was 0.77 and the regression equation was:

Y 5 4.94X 1 56.64
This tells us that for each investment of $0.15 million, the team’s performance is 
estimated to improve by one game. In other words, an owner must spend about 
$5,060,728 (or an average of $202,429 per player) to win one game. Overall, the 
relationship is significant, and the best explanation is that there is an association 
between payroll and performance.

Calculation of a Regression Equation (Data from Table 3.5)
Formulas:

 b 5
N 1ΣX Y 22 1ΣY 2  1ΣY 2

N ΣX 22 1ΣX 22
 a 5 Y2bX

STEPS
1. Find N by counting the number of pairs of observations. N 5 15.
2. Find ΣX by summing the X scores.

$8.85 1 $6.89 1 $6.18 1 c.1 $2.76 5 $70.53
3. Find ΣY  by summing the Y scores.

91 1 87 1 103 1 c. 11198
4. Find ΣX 2. Square each X score and then sum them.18.8522 1 16.8922 1 16.1822 1 c. 12.7622 5 373
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FIGURE 3.13  
Payroll (in $ million) 
versus performance 
(games won) by 
National League teams 
in 2011.
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  CHAPTER 3 ● Correlation and Regression 95

5. Find ΣY 2. Square each Y score and then sum them.1828122 1 1756922 1 11060922 1 c. 1462422 5 97,402
6. Find ΣX Y. For each pair of observations multiply X by Y. Then sum the products.

805.49 1 599.44 1 636.85 1 c. 1187.70 1 5,839.57
7. Find 1ΣX 22 by squaring the results of Step 2.

70.532 5 4,974.48
8. Find 1ΣY 22 by squaring the results of Step 3.

1,1982 5 1,435,204
9. Find N ΣXY  by multiplying the results of Step 1 by Step 6.

15 3 5,839.57 5 87,593.55
10. Find(ΣX) (ΣY) by multiplying the results of Steps 2 and 3.

70.53 3 1,198 5 84,500.36
11. Find 1N ΣX Y 22 1ΣX 2 1ΣY 2 by subtracting the results of Step 10 from the 

 result of Step 9.
87,593.55 2 84,500.36 5 3,093.12

12. Find N  ΣX 2 by multiplying the results of Steps 1 and 4.
153373.42 5 5601.30

13. Find N ΣX 22 (ΣX )2 by subtracting the result of Step 7 from that of Step 12.
5601.30 2 4,974.48 5 626.82

14. Find b by dividing the result of Step 11 by that of Step 13.
3,093.12>626.82 5 4.93

15. Find the mean of X by dividing the result of Step 2 by that of Step 1.
$70.53>15 5 $4.70

16. Find the mean of Y by dividing the result of Step 3 by that of Step 1.
1,198>15 5 79.87

17. Find bX by multiplying the results of Steps 14 and 15.
4.93 3 4.70 5 23.17

18. Find a by subtracting the results of Step 17 from Step 16.
79.87 2 23.17 5 56.70

19. The resultant regression equation is
 Y 5 a 1 bX
 Y 5 56.70 1 4.93X

Games won 5 56.70 1 (4.93X average salary in millions of dollars)
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96 CHAPTER 3 ● Correlation and Regression

Calculation of a Correlation Coefficient (Data from Table 3.5)
Formula:

r 5
N ΣX Y 2 1ΣX 2  1ΣY 2"3N ΣX 2 2 1ΣX 224  3N ΣY 2 2 1ΣY 224

1. Find N by counting the number of pairs of observations. N 5 15.
2. Find ΣX by summing the X scores.

$8.85 1 $6.89 1 $6.18 1 c. 1 $2.76 5 $70.53
3. Find ΣY  by summing the Y scores.

91 1 87 1 103 1 c. 11198
4. Find ΣX 2. Square each X score and then sum them.18.8522 1 16.8922 1 16.1822 1 c. 12.7622 5 373
5. Find ΣY 2. Square each Y score and then sum them.1828122 1 1756922 1 11060922 1 c. 1462422 5 97,402
6. Find ΣXY. For each pair of observations multiply X by Y. Then sum the 

products.
805.49 1 599.44 1 636.85 1 c.1  187.70 1 5,839.57

7. Find (ΣX)2 by squaring the results of Step 2.
70.532 5 4,974.48

8. Find (ΣY)2 by squaring the results of Step 3.
1,1982 5 1,435,204

9. Find N ΣX Y  by multiplying the results of Step 1 by Step 6.
15 3 5,839.57 5 87,593.55

10. Find (ΣX 2  (ΣY) by multiplying the results of Steps 2 and 3.
70.53 3 1,198 5 84,500.36

11. Find 1N ΣX Y 2 2 1ΣX 2 1ΣY 2 by subtracting the results of Step 10 from the 
 result of Step 9.

87,593.55 2 84,500.36 5 3,093.12
12. Find N  ΣX 2 by multiplying the results of Steps 1 and 4.

15 3 373.42 5 5601.30
13. Find N ΣX 2 2 (ΣX )2 by subtracting the result of Step 7 from that of Step 12.

5601.30 2 4,974.48 5 626.82
14. Find N ΣY 2 by multiplying the results of Steps 1 and 5.

15 3 97,402 5 1,461,030
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  CHAPTER 3 ● Correlation and Regression 97

15. Find N ΣY 2 2 (ΣY )2 by subtracting the result of Step 8 from that of Step 14.
1,461,030 2 1,435,204 5 25,826

16. Find "3N ΣX 2 2 1ΣX 224 3N ΣY 2 2 1ΣY 224 by multiplying the results  
of Steps 13 and 15 and taking the square root of the product.!626.82 3 25,826 5 4023.46

17. Find r 5
N ΣX Y 2 1ΣX 2  1ΣY 2$3N ΣX 2 2 1ΣX 224  3N ΣY 2 2 1ΣY 224 , by dividing the result of  

Step 11 by that of Step 16.
3,093.12>4023.46 5 0.77
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