

Ch. 2 - Measurement & Stats

110

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Copyright © 2020 Michael Diehr
All Rights Reserved

For use only by students enrolled
in my sections of Psyc 402
through December 2020.

May not be posted, shared or uploaded
online without permission.

111

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Reminders

- Exercise 1
 - begin today, due Tuesday Sep 15th by 3pm
 - live help available Thursday @ discussion section
- Quiz 2 is open
 - Due before 3pm Thursday
- Participation credit - Zoom on Thursday
 - come prepared with a discussion question
 - a good question will...
 - relate 2 or more ideas
 - using specific page#s from notes or text

112

Psychology 402 - Fall 2020 - Dr. Michael Diehr

$$S = \sqrt{\frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N - 1}}$$

113

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Measurement & Stats

- Why numbers?
- Distribution & Graphs : Histogram
- Central Tendency
- Mean, SoR, SSR, Variance, Standard Deviation
- In-class exercise
- Population vs. Sample
- Measurement Scales
- Precision vs. Accuracy
- Logic and Logical Fallacies Descriptive vs. Inferential Statistics
- Norms

114

Psychology 402 - Fall 2020 - Dr. Michael Diehr

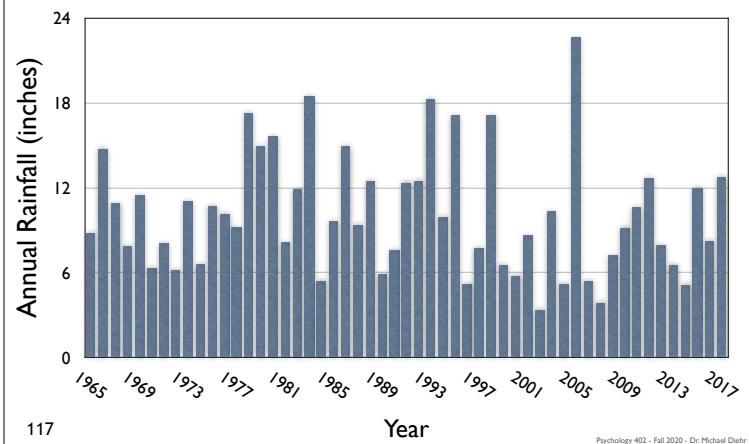
Basic Statistics

- Why use numbers?
- Pros:
 - convenient, succinct
 - universal
 - well-defined, repeatable
- Cons:
 - precision vs. accuracy
 - numerical fallacy

115

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Tabular Data


Year	Rainfall (inches)
1965	8.81
1966	14.76
1967	10.86
1968	7.86
1969	11.48

116

Psychology 402 - Fall 2020 - Dr. Michael Diehr

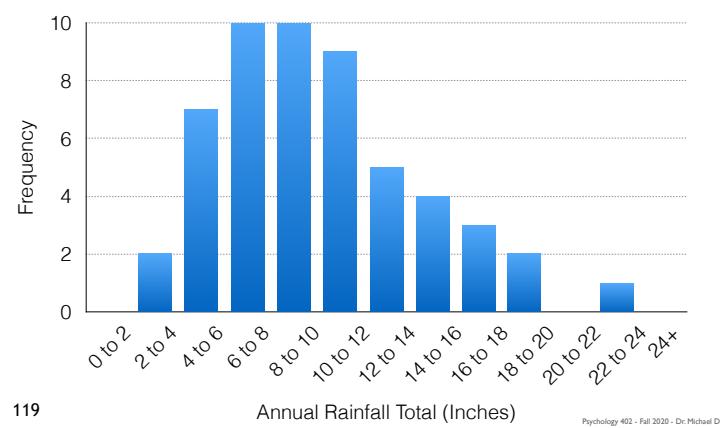
Data Distributions

San Diego Annual Rainfall (1965-2017)

117

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Histogram


- Frequency Distribution
- Invented by Karl Pearson
- Shows data from *one* variable only
- Data is (often) collected into groups ("bins")

118

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Histogram

Frequency Distribution of San Diego Annual Rainfall 1965-2017

119

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Describing Distributions

- Why? Large lists are inconvenient. Reduce many data points to a few numbers.
- Issue: Reducing data ("Degrees of freedom") : throws away data.
- We are modeling our data using a simplification.
- "All models are wrong, some models are useful!"
- Simple vs. Simplistic?

120

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Descriptive Statistics

- Statistical Assumptions: When these are not met, weird things happen.
- Joe Smith is 6 feet tall, his child is 1 foot tall. Thus, the average height in the Smith household is 3.5 feet.
- If you are sitting in bar, and Bill Gates walks in, suddenly everyone in the bar is (on average) a multi-millionaire.

121

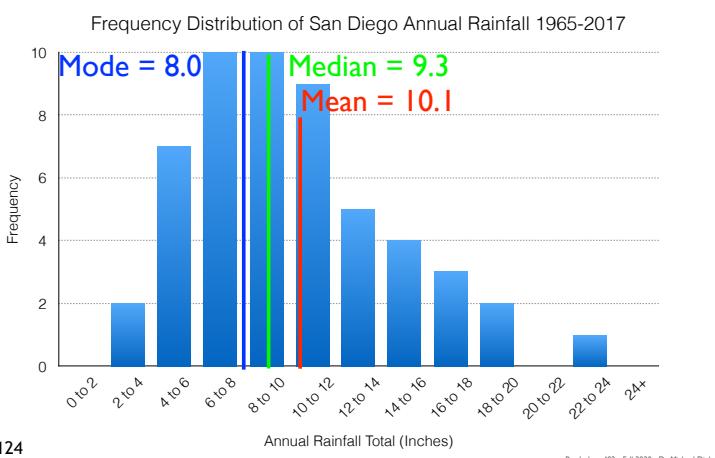
Psychology 402 - Fall 2020 - Dr. Michael Diehr

Alternative Notation

- Square Root (x) $\text{sqrt}(X)$ \sqrt{X} $\sqrt[2]{X}$
- X-Squared X^2 X^{**2} X^2
- Sum(x) $x_1+x_2+x_3\dots$ $\sum_{i=1}^N x_i$ $\sum x$
- Mean M $\frac{\sum x}{N}$ \bar{X}

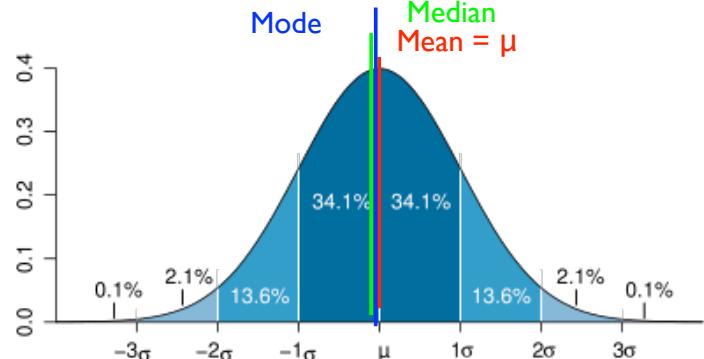
122

Psychology 402 - Fall 2020 - Dr. Michael Diehr


Central Tendencies

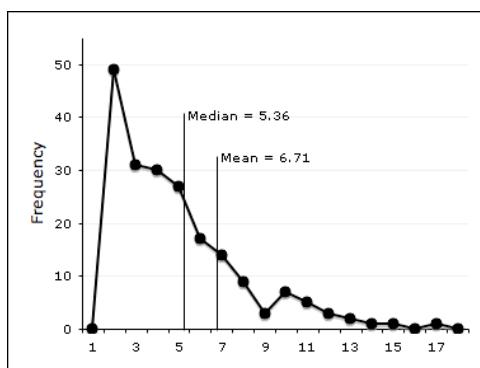
- Values tend to cluster around a point.
- **Mean** : most common statistic, commonly referred to as the “average”. Formula $\Sigma X / N$
- **Mode**: the most common value in a set
 - rare to use in statistics
- **Median**: the middle-most value in a set
 - the value at which half are above and half are below. Aka the 50th percentile.

123


Psychology 402 - Fall 2020 - Dr. Michael Diehr

Histogram

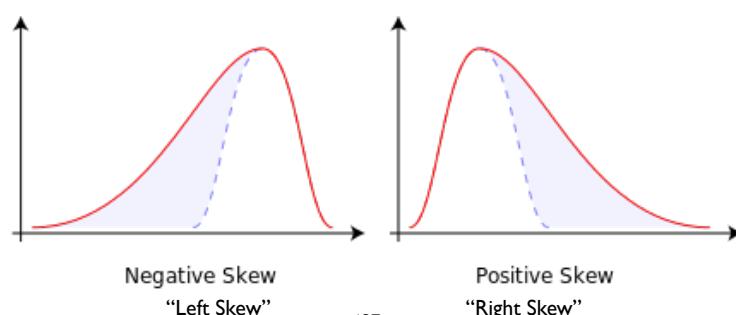
124


Normal Distribution

125

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Skewed Distribution



20
In a skewed distribution, the mean, mode, and median are all often different

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Skew

- negative skew : fatter tail on the left
- positive skew : fatter tail on the right

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Measures of Central Tendency 1

	Description	Algorithm	Formula
Mean	the "average"	sum values, divide by N	$\bar{x} = \frac{\sum_{i=1}^N x_i}{N}$
Median	the "middle-most value"	sort values, find middle value	50th percentile
Mode	the "most common" value	find most frequent value	...

128

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Measures of Central Tendency 2

Behavior:	Normal Distribution	Skewed Distribution
Mean	same	overly affected by outliers
Median	same	fairly resistant to outliers
Mode	same	resistant to outliers

129

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Measures of Dispersion 1

- Compare each measured value to the average
- "for a typical value, how far away is it from the mean"
- "Difference score" or "residual" can be calculated as the difference between the actual score and the mean. In other words, $d_i = x_i - \bar{X}$
- Take the average (mean) of the difference scores.
- Average difference score = $\text{Sum}(d) / N$

130

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Average Difference Score

	Score (x)	Mean (\bar{X})	Difference $d = (x - \bar{X})$
	2	6	-4
	3	6	-3
	9	6	3
	11	6	5
	14	6	8
	1	6	-5
	6	6	0
	4	6	-2
	5	6	-1
	5	6	-1
Sum	60	60	0
Mean	6	6	0

131

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Sum of Residuals

- Given N samples of x : $x_1, x_2, x_3 \dots x_N$
- mean of x $\bar{x} = \frac{\sum_{i=1}^N x_i}{N}$
- residuals $d_i = x_i - \bar{x}$
- Sum of Residuals is always zero

$$\sum_{i=1}^N d_i = 0$$

132

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Sum of Residuals

- The "average difference score" score will *always* equal zero
- Solution:
 - Square the residuals *before* adding: removes the negative values.
 - "SSR" or Sum of Squared Residuals

133

Psychology 402 - Fall 2020 - Dr. Michael Diehr

SSR: Sum of Squared Residuals

- Given N samples of X: $x_1, x_2, x_3 \dots x_N$

- mean of x

$$\bar{x} = \frac{\sum_{i=1}^N x_i}{N}$$

- residuals

$$d_i = x_i - \bar{x}$$

- Sum of Squared Residuals (SSR)

$$SSR = \sum_{i=1}^N (d_i)^2$$

134

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Problems with SSR

- SSR depends on units of measurement:

- a meter is 1000 millimeters, so SSR will be $1000 \times 1000 =$ one million times higher when using meters vs. millimeters

- SSR depends on N (# of samples)

- Doubling N will cause SSR to double (roughly)

- Therefore, SSR is hard to understand:

- is $SSR = 0.00342$ high or low?
- is $SSR = 2343249$ high or low?

135

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Remove the influence of N

- The Sum of a set of values depends on the number (N) of values:

- $\sum_{i=1}^N x_i$

- Take the average (mean)

- this divides by N

- removes the influence of N

136

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Variance

- Problem: SSR depends on N

- Solution: Take the average of SSR to remove the influence of N

- The average of the squared residuals is called Variance (S^2)

137

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Variance

- Variance = SSR/N
- Variance = mean of squared residuals

$$S^2 = \frac{\sum_{i=1}^N (d_i)^2}{N}$$

$$S^2 = \frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N}$$

138

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Problems with Variance

- Units are squared:

- measuring height in meters?
variance is meters²

- measuring # of cupcakes eaten?
variance is (# of cupcakes eaten)²

- Won't someone rid me of these meddlesome squared units?

139

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Standard Deviation

- Improving on Variance:
- The square root of Variance (S^2) gives S , which is called “Standard Deviation”.
- Also abbreviated SD, StdDev or σ (Greek letter sigma)
- SD : easier to understand because it's in the same units as your measurement.
- SD is a unique property of the normal distribution -- given a mean and a SD you have uniquely specified the distribution

140

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Standard Deviation

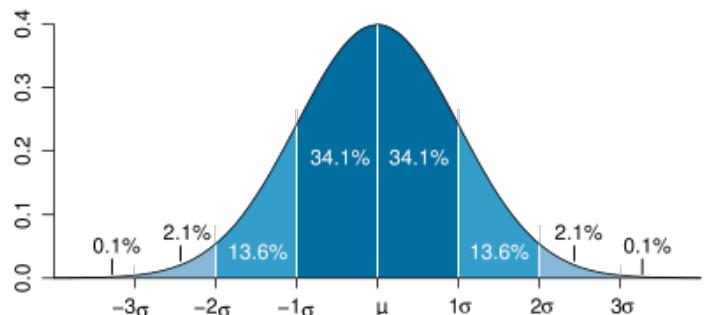
- SD = Square root of Variance

$$S = \sqrt{\frac{\sum_{i=1}^N (d_i)^2}{N}}$$

$$S = \sqrt{\frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N}}$$

141

Psychology 402 - Fall 2020 - Dr. Michael Diehr

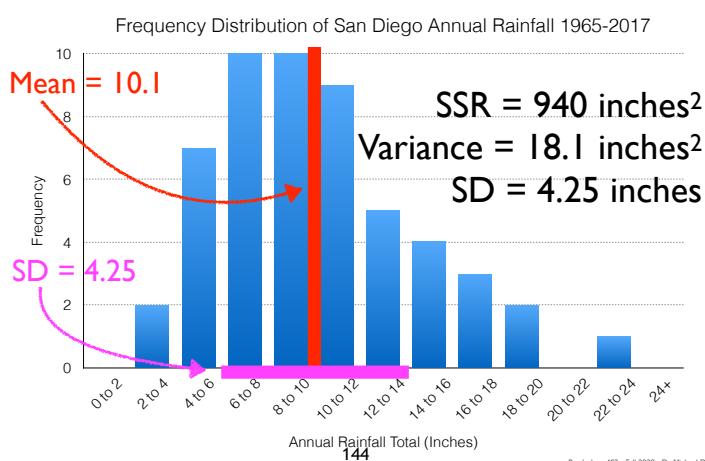

Standard Deviation

- can be thought of as the “average deviation”
- (but it's not literally average deviation, since we showed earlier the average difference score is always Zero)
- Technically:
 - (in a normal distribution) scores will be within plus or minus 1 SD about 68% of the time

142

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Normal Distribution



In a normal distribution, about 68.2% of values fall within ± 1 SD

143

Psychology 402 - Fall 2020 - Dr. Michael Diehr

SSR, Variance and SD

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Central Limit Theorem

- No matter the shape of the Population distribution, if you take enough (*) samples of the mean, the distribution of your samples of the mean will have a Normal distribution
- Central Limit Theorem Exercise (Javascript)
- This fact makes our life easy: Many statistics assume a normal distribution. The CLT provides us a normal distribution in most cases, even when the population data is skewed

145

Psychology 402 - Fall 2020 - Dr. Michael Diehr

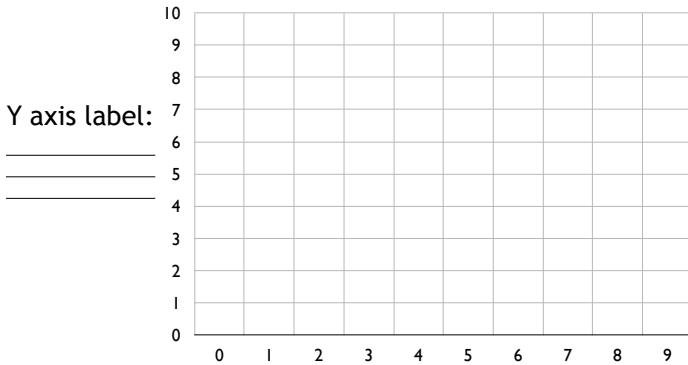
Exercise: normal distribution

- Roll one 10-sided die 10 times and record the results
- Prediction
 - Your Distribution: Uniform (flat)
 - Mean : 4.5
 - Class Distribution: ???
- hint: What is N? # die rolls, # of students?
- List and Graph results
- Does the distribution look normal?
 - if so, why?

146

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Exercise 1: Die Rolls


X	M	$d = (x_i - M)$	$(residual)^2$
2	3	-1	1
3	3		
5	3		
2	3		

N	$M = \bar{X}$	Σ Residuals	Σ (residual 2)	Σ (residual 2) N-1	$\sqrt{S^2}$
	3				

147

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Graph:

X axis label: _____

Caption: _____

148

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Y axis
Label

X axis
Label
Caption

Example of APA style Histogram
of years
Rainfall total (inches of rain)
Units
Figure 1: Frequency Distribution of annual Rainfall in San Diego for the years 1970-2002, measured at Lindberg Airport, by water year (October-September)
Note the somewhat bi-modal distribution, with both 9 to 12 and 18 or more inches being most common.

Psychology 402 - Fall 2020 - Dr. Michael Diehr

What
Who
Where
When
(Why)
(How)

Exercise: normal distribution 2

- Compute Mean (\bar{X}) - is it near 4.5?
- Compute residuals
- Compute sum of residuals -- do they add to zero?
- Compute squared residuals
- Compute Sum of squared residuals (SSR)
- Divide SSR by (N-1) - this is Variance or (S^2)
- Take square root of variance - this is S or Standard Deviation
- For this exercise, SD should be near 2.8

150

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Intermission

- End of Part 1
- Take a break
- Good time to start working on Exercise 1
 - bring questions to Thursday discussion
- Participation credit - Zoom on Thursday
 - come prepared with a discussion question
 - good questions will...
 - relate 2 or more ideas
 - using specific page#s from notes or text

151

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Ch. 2 - Part 2

152

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Reminders

- Add/Drop day Friday - Switch Sections?
- This is a 3 part lecture - each part about 90 minutes long. Take breaks & pace yourself.
- Part 3 extends into next week
- Readings: Ch. 2 of "K" textbook, finish Ch. 1 and 2 of "G" book (Mismeasure of Man)
- Exercise 1
 - finish Part 1 and Part 2 first.

153

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Review - Stats

- Why Numbers?
 - pros
 - cons
- Distributions
 - Tables
 - Graphs

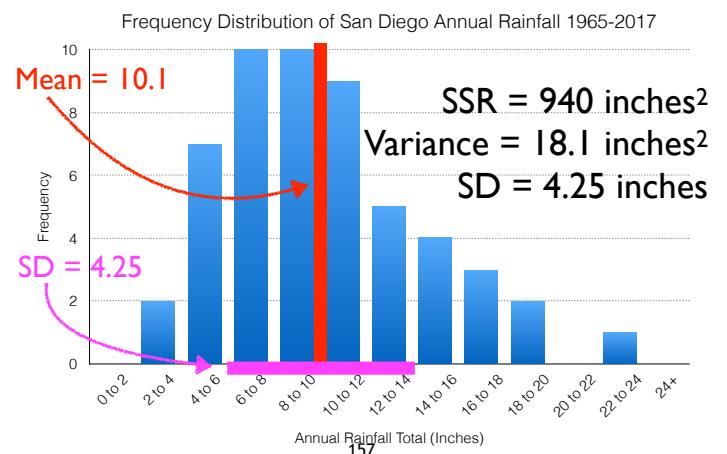
154

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Review - Descriptives

- Frequency Distribution aka Histogram
 - graphically shows data
- Central Tendency
 - mean, median, mode
- Dispersion or Variation
 - residual
 - sum of residuals = 0
 - sum of squared residuals > 0
 - $SSR/N = \text{Variance}$
 - $\text{Sqrt}(\text{Variance}) = \text{Standard Deviation}$

155


Psychology 402 - Fall 2020 - Dr. Michael Diehr

Frequency Distributions


156

Psychology 402 - Fall 2020 - Dr. Michael Diehr

SSR, Variance and SD

Review : Distributions

In a normal distribution, about 68.2% of values fall within ± 1 SD

158

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Standard Deviation

- SD = Square root of Variance

$$S = \sqrt{\frac{\sum_{i=1}^N (d_i)^2}{N}}$$

$$S = \sqrt{\frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N}}$$

159

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Exercise: key points

- Some events (such as the roll of a die) have a flat (or ‘uniform’) distribution, but these are rare.
- Many big events are composed of many small events.
- Events in the real world often are distributed in a (nearly) normal distribution
- Assuming a normal distribution, the easiest way to describe the data is by two factors: Mean and SD.

160

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Central Limit Theorem

- No matter the shape of the Population distribution, if you take enough (*) samples of the mean, the distribution of your samples of the mean will have a Normal distribution
- [Central Limit Theorem Exercise \(Javascript\)](#)
- This fact makes our life easy: Many statistics assume a normal distribution. The CLT provides us a normal distribution in most cases, even when the population data is skewed

161

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Types of Statistics

- Descriptive:
 - Goal: help you describe the data
 - reduce the amount of data necessary for understanding
 - don’t draw conclusions -- “just the facts”
- Inferential:
 - Goal: draw conclusions from your sample to the larger data set (population)

162

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Measurement Scales

- Nominal
- Ordinal
- Interval
- Ratio

163

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Nominal Scale

- Nominal: Name or ID only
 - red, blue, green....
 - john, tony, fred...
 - Sci2-243, Sci2-245...
- does not signify Ordering, Ranking, or More/Less
- Gotcha: even if used with Numbers it may be still a Nominal.
- Example: colors, names, room numbers, ID numbers

164

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Ordinal Scale

- Ordinal : ordering
 - first, second, third....
 - 1, 2, 3...
 - A, B, C...
- signifies Order, but can't assume distance between items is the same, e.g. the difference between an A and a B may be much different than a B and a C
- Example: Class Rank, Assignment Grade, Product Ratings

165

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Interval Scale

- Interval: specifies orders AND inter-item distance
 - -3, -2, -1, 0, 1, 2, 3.... 100, 105, 115
 - the difference between two numbers IS the same, e.g. 100 to 105 should be the same amount as 105 to 110
- Does NOT have an absolute zero.
- Example: temperature in Degrees Fahrenheit

166

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Ratio Scale

- Ratio: specifies orders AND inter-item distance and has absolute zero
 - 0, 1, 2, 3.... 100, 105, 115
 - the difference between two numbers IS the same, e.g. 100 to 105 should be the same amount as 105 to 110
- Does have an absolute zero.
- Example: temperature in Degrees Kelvin

167

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Measurement Scales

	Magnitude	Equal Intervals	Absolute Zero
Nominal			
Ordinal	✓		
Interval	✓	✓	
Ratio	✓	✓	✓

168

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Scales: Practical Info

- Nominal Scale: common
 - common stats: Count, Frequency, Mode
- Ordinal Scale: less common
 - stats: specialized “nonparametric” techniques required
- Ratio and Interval: common
 - Often can be treated identically with same statistical techniques

169

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Descriptive Statistics

- Count (N)
- Range (minimum, maximum)
- Frequency Distribution (histogram)
- Rank order, percentile (%ile)
- Central Tendency
 - Mean
 - Median
 - Mode
- Variation / Dispersion (Variance, Standard Deviation)

170

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Population vs. Sample

- Ideally, measure *everyone* to get the exact value (*Population parameter*)
- Practically, this is impossible.
- Take samples instead, and calculate the *Sample statistic*.
- The “Law of Large Numbers”, “Sampling Theory”, “Central Limit Theorem” makes life easier
- [Central Limit Theorem Exercise \(Javascript\)](#)
- Some formulas differ for *Population* vs. *Sample* (divide by N or divide by N-1 ?)

171

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Population v. Sample

	Population	Sample
Definition	the entire set of items	the actual subset you measured
Descriptives	“Parameters”	“Statistics”
Symbols	Greek	Roman
Mean	μ	\bar{x}
Std. Deviation	σ	s
Variance	σ^2	s^2
Divide by	N	N-1

172

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Law of Large Numbers

- If you take enough* samples, the sample mean approaches the population mean.
- Example: a coin has two sides. If heads=1 and tails = 0, then the average expected result is exactly 50% Heads (0.5) in the long run.
- However, if you flip a coin just a few times, getting exactly 0.5 is not likely.
- The LLN states that you will if you take enough samples.

* what is “enough”? Rule of thumb : 100.

173

Psychology 402 - Fall 2020 - Dr. Michael Diehr

LLN Demonstration

- Law of Large Numbers
- [Demonstration with Coin Flips](#)

174

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Logical Fallacies

175

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Logical Arguments

- Logical arguments or inferences generally have several components:
 - Premises
 - Conclusions
- Example:
 - Premise: All English people are musicians
 - Premise: John Lennon was English
 - Conclusion: John Lennon was a musician

176

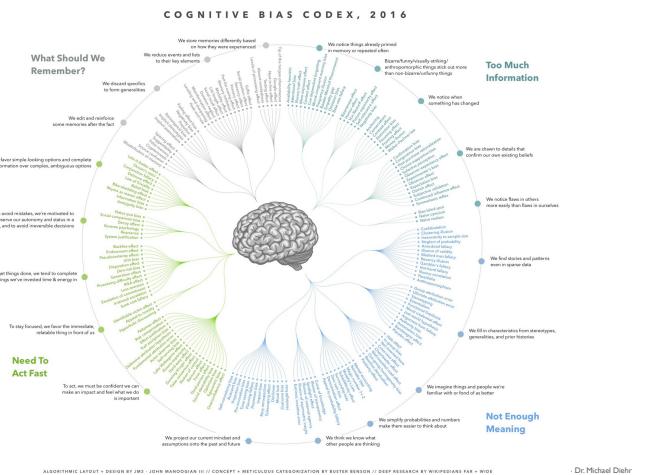
Psychology 402 - Fall 2020 - Dr. Michael Diehr

Logical Arguments 2

- An Inference can be either Valid or Invalid -- this refers to the Structure of the argument (not the Facts themselves)
 - All A are B
All C are A
All C are B
- A Valid inference can still come to a false conclusion, and vice-versa

177

Psychology 402 - Fall 2020 - Dr. Michael Diehr


Logical Fallacies

- A Logical Fallacy generally means that your inference is Invalid to begin with. In addition, your facts may or may not be true, but the flaw in reasoning has occurred before you even apply facts.
- Example: Affirming the consequent
 - If P, then Q
 - Q is true
 - Therefore Pbank owners are rich
Bill Gates is rich
Bill Gates works at a bank

178

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Cognitive Bias Codex

Biased Sample

- Every individual x that we have seen from sample X has characteristic Z
Therefore ALL X have characteristic Z
- Every student I talk to in this class is interested in Psychology
Therefore, ALL students are interested in Psychology

180

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Nominal and Numeric

- Nominal Fallacy: The tendency to believe that something has a name or identification, it exists or has special meaning.
“I am sleepy” vs. “I am suffering from activity-induced-rest-reduction-performance-impairment syndrome”
- Numerical Fallacy: belief that something has been measured and assigned a number, it actually exists. “I’m really sad” vs. “I scored a 32 on the Beck Depression Inventory”

181

Psychology 402 - Fall 2020 - Dr. Michael Diehr

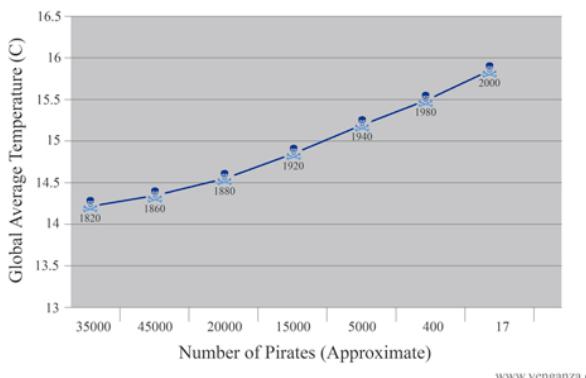
Reification Fallacy

- To Reify - to make something more concrete or real
- Examples:
 - “An A student”
 - “High IQ”
 - “Top of the class”
 - “A F Grade”

182

Psychology 402 - Fall 2020 - Dr. Michael Diehr

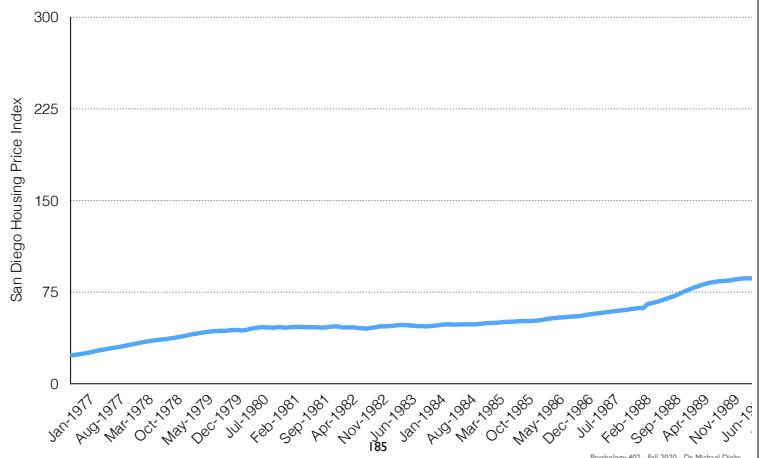
Ranking Fallacy


- Reducing a complex phenomenon (e.g. intelligence), giving it a single number (reification) and then ordering based on that number
- Examples:
 - A IQ of 93 is better than an IQ of 90
 - An income of \$50,000 is better than \$45,000

183

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Correlation = Causation


Global Average Temperature Vs. Number of Pirates

184

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Hasty Generalization

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Other Fallacies

- Begging the question -- circular argument
- Correlation implies causation
- Post hoc ergo propter hoc (*after this, therefore because of this*)
- Appeal to Authority
- Ad-hominem
- Straw Man
- False Dilemma

186

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Significant Figures

- “digits of precision” or “sig. fig.”
- Ignoring *leading zeros*, how many digits in the measurement?
 - 00123 has 3 sig. fig.
 - 12003 has 5 sig fig
 - -9.87 has 3 sig fig
 - 0.000987 has 3 sig. fig.
 - 12.1 has 3 sig. fig.
 - 12.0 has 3 sig. fig.
- Please use 3 sig fig for this class
- Note: not the same as “decimal places”

187

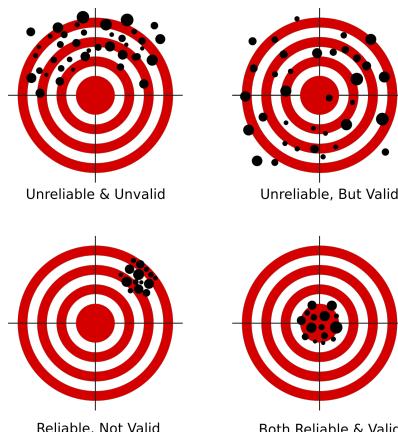
Psychology 402 - Fall 2020 - Dr. Michael Diehr

Precision vs. Accuracy

- Precision : the level of detail a measurement is made with, often specified with an error-range
 - “about 6 feet plus or minus 1 foot” vs. “6 foot 11 inches plus or minus 1 inch”
- Accuracy: how close the measured value is to the actual value, does it “hit the target”
 - Think arrow vs. shotgun
- A number can be precise and accurate, precise but inaccurate, or accurate but imprecise.

188

Psychology 402 - Fall 2020 - Dr. Michael Diehr


Precision Fallacy

- A number that is *precise* may seem to be *accurate* when it is not
- A measurement that is *reliable* may seem to have *validity* when it does not

189

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Precision vs. Accuracy

- Target shooting analogy
- Similar to Reliability vs. Validity

190

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Fallacies re: Probability

- Classical
- Gambler's Fallacy
- Bayesian Reasoning

191

Psychology 402 - Fall 2020 - Dr. Michael Diehr

9 Heads in a row

- You are flipping a coin, and get 9 heads in a row
H H H H H H H H H
- What is the % chance the next flip will be a H ?
- Three common answers:
 - 50/50
 - more likely Heads
 - more likely Tails

192

Psychology 402 - Fall 2020 - Dr. Michael Diehr

9 Heads: Classical Inference

- Coin flips are independent 50/50 events, therefore 50% : Logical/Statistical
- This is the *correct* answer for a fair coin

193

Psychology 402 - Fall 2020 - Dr. Michael Diehr

LLN Demonstration

- Law of Large Numbers
- Demonstration with Coin Flips

194

Psychology 402 - Fall 2020 - Dr. Michael Diehr

9 Heads: Gambler's Fallacy

- Coin flips are independent 50/50 events, but we just saw 9/10 heads, therefore a Tail is “due”
- This is the “Gambler’s Fallacy” and one reason Casinos make tons of money. The reasoning is faulty.
- Note: when dealing with draws w/o replacement, this logic is *correct*. For example, a single-card blackjack deck -- if no face cards have come up after 30 cards, then face cards are due

195

Psychology 402 - Fall 2020 - Dr. Michael Diehr

9 Heads: Bayesian Statistics

- Coin flips are supposed to be 50/50 events, but we just saw 9/10 heads, therefore the data is telling us that perhaps this is not a fair coin.
- Bayes’ theorem suggests you evaluate the prior probabilities in determining future behavior
- In this case, you’d conclude that Head is more likely on the next flip

196

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Cognitive Biases of Discrimination

- Which cognitive biases (logical fallacies) are involved in racism, sexism and other bigoted beliefs?

197

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Intermission

- End of Part 2

198

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Ch. 2 - Part 3

199

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Reminders

- Finish Chapter 2 Lecture
- Z-Score Exercise (optional, for practice, not for points)
- Exercise 1 was due Tuesday - submit it late for reduced credit

200

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Review - History

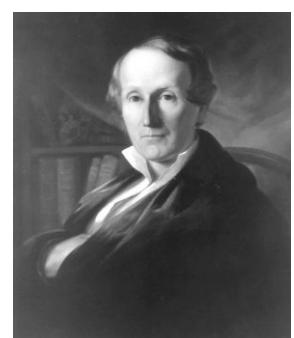
- Themes
 - 18th-19th century
 - 19th-20th century
- Theories of Human Development
 - Creationism
 - Polygenism
 - Evolution
 - Genetics
- Controversy
 - IQ testing of various groups

201

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Louis Agassiz

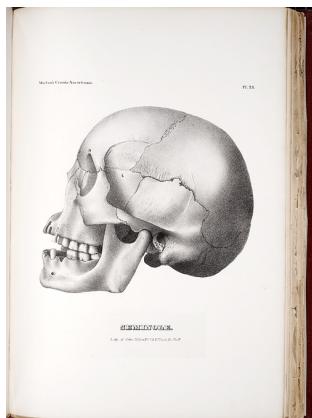
- Swiss-born, European-trained biologist / geologist
- Came to Harvard in 1847
- Creationist -> Polygenist
- Taxonomist
- Resisted Darwin's theory of Evolution
- d. 1873



202

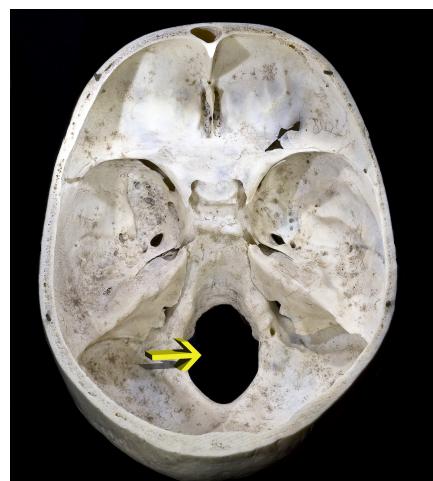
Psychology 402 - Fall 2020 - Dr. Michael Diehr

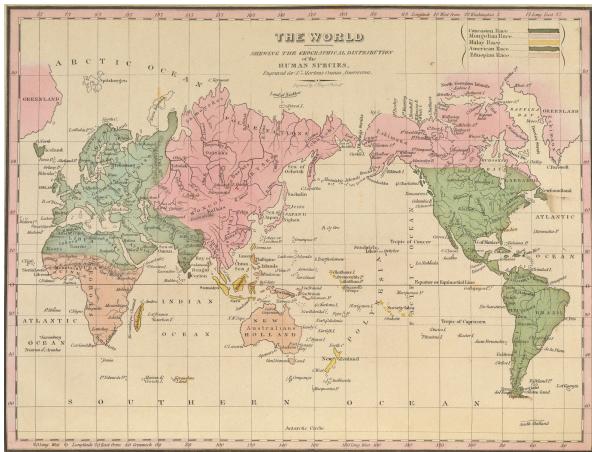
Review: Samuel George Morton


- Theory of Polygenism
 - Humans are composed of different species, created by god
- Craniometry
- Biological Determinism
- "Scientific Racism"
- The "American School"
- d. 1851

203

Psychology 402 - Fall 2020 - Dr. Michael Diehr


Crania Americana


Samuel George Morton
1839

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Foramen Magnum

Psychology 402 - Fall 2020 - Dr. Michael Diehr

206

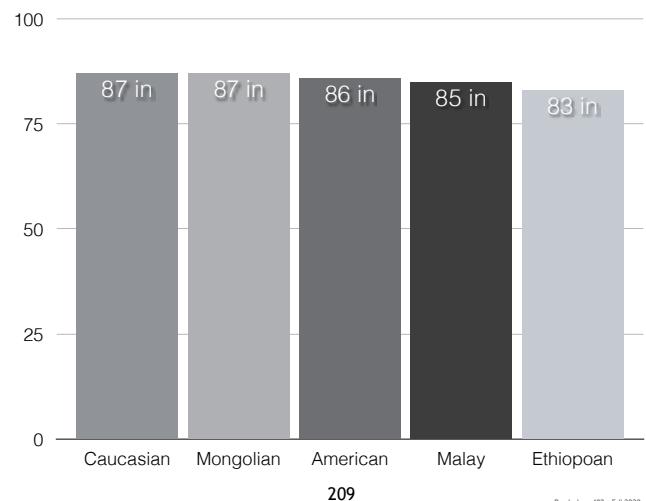
Psychology 402 - Fall 2020 - Dr. Michael Diehr

Morton's Data as printed

Race	N	Cranial Volume Mean
Caucasian	52	87
Mongolian	10	83
American	144	82
Malay	18	81
Ethiopian	29	78

207

Psychology 402 - Fall 2020 - Dr. Michael Diehr


Data, corrected

Race	Mean (Morton)	Mean (corrected)
Caucasian	87	87
Mongolian	83	87
American	82	86
Malay	81	85
Ethiopian	78	83

208

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Corrected

209

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Seed vs. Shot

Race	Difference (seed - shot)
Caucasian	1.8
Mongolian	n/a
American	2.2
Malay	n/a
Ethiopian	5.4

210

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Morton's errors

- Fundamental arithmetic errors
- Data selection errors
- Failure to measure or control for external variables (biological sex, body size, etc.)
- Basic Statistical errors (averaging measurements from unequal size subgroups)
- The racist thumb press?
- Is he a liar? Conscious or subconscious?

211

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Internal vs. External Validity

- Internal Validity - how did it work?
 - were the methods good
 - did the IV cause the DV
- External Validity - what does it mean?
 - does skull size indicate IQ?
 - does IQ indicate personal worth?

212

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Is skull size related to IQ?

- Yes. No. Maybe? Probably not much.
- Correlation between IQ and brain size: $R = 0.24$ (Pietschnig, 2015)
- $R^2 = \sim 6\%$ which means 94% of variance is *not explained*
- Thus, observed 3-4 cubic inch difference between the races would account for, *at most*, a 2-3 point IQ difference.
- But... men have ~10% larger brains than women, but do not show higher IQ (more on this later)

213

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Review

- Frequency Distribution aka Histogram
- Normal Curve
 - CLT, Mean (SD)
- Law of Large Numbers
- Scales of Measurement
- Population vs. Sample
- Logical Fallacies
 - Precision vs. Accuracy
 - Reliability vs. Validity
 - Gambler's Fallacy

214

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Comparing Scores

- Compare a single score to the population
- One way: difference scores
- Problem: Is a difference of "3" big or little? On a 100 point test it's not very large, but on a 10 point test it's the difference between an A and a C

215

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Comparing Scores

- Desire a system independent of the raw score units (just like letter grades)
- Two methods:
 - Ranks & Percentile Ranks...
 - Standard Scores...

216

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Ranks, Percentiles

- Given a distribution of scores, and a single score
- **Rank** = the item # of the single score when sorted high to low
- **Percentile Rank** = the % of scores which are lower than the given score
- **Percentile** = the score at which a given percent of scores are below a given score
- Note: "Percentile" often used informally to mean "Percentile Rank"

217

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Rank & Percentile

- Infant mortality per 1000 live births
- Sorted low to high

Old slide -
From textbook
please ignore

Country	Score
Sweden	2.4
Japan	3.4
France	4.5
USA	7.5
Colombia	20.4
China	37.9
Bolivia	66.4
Ethiopia	142.6
Mozambique	148.6
Zambia	168.1

218

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Rank & Percentile

- Coronavirus Deaths
- Total deaths, per million people
- Sort low to high

Country	Score
Mozambique	0.9
China	3.0
Ethiopia	8.0
Japan	11.0
Zambia	16.0
Colombia	424.0
France	471.0
Sweden	577.0
USA	584.0
Bolivia	599.0

219

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Rank & Percentile

- Determine Rank #

Country	Score	Rank
Mozambique	0.9	1
China	3.0	2
Ethiopia	8.0	3
Japan	11.0	4
Zambia	16.0	5
Colombia	424.0	6
France	471.0	7
Sweden	577.0	8
USA	584.0	9
Bolivia	599.0	10

220

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Percentile Rank
= # of cases with
worse value
divided by # of
cases

e.g. France is 7th
of 10 (it has 3
cases with worse
values)
3 / 10 = 30%
percentile rank

Percentile Rank

Country	Score	Rank	%ile Rank
Mozambique	0.9	1	90
China	3.0	2	80
Ethiopia	8.0	3	70
Japan	11.0	4	60
Zambia	16.0	5	50
Colombia	424.0	6	40
France	471.0	7	30
Sweden	577.0	8	20
USA	584.0	9	10
Bolivia	599.0	10	0

221

Psychology 402 - Fall 2020 - Dr. Michael Diehr

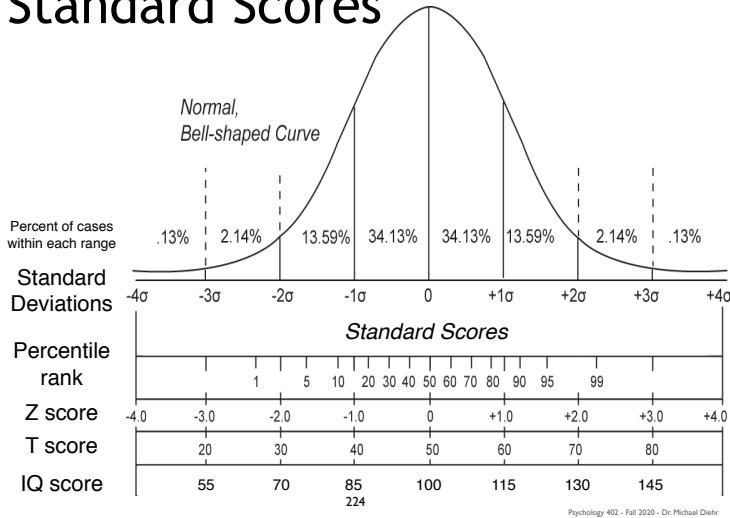
Standard Scores 2

- Use the mean and standard deviation as points of reference.
- Standard score : distance from the mean, scaled by standard deviation
- Not affected by raw score units.
- Different standard scores mean the same thing, but are expressed differently.
 - just like how 1.0 and 100% mean the same thing
- Unfortunately, there are several different Standard Score systems!

222

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Z-score


- A Z score is the # of standard deviations above (+) or below (-) the mean of a single measurement.
- Algorithm: given a single score (X_i), subtract the mean M , divide by the standard deviation S
- Formula
 - $Z = (X - M) / SD$

$$Z_i = \frac{X_i - \bar{X}}{S}$$

223

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Standard Scores

Standard Scores: Z, T, IQ

	Z scores	T scores	IQ scores
Mean	0	50	100
SD	1	10	15
Example: top 3%			
Example: top 1%			
Formula: from Z Score	Z	$(Z*10)+50$	$(Z*15)+100$

Psychology 402 - Fall 2020 - Dr. Michael Diehr

225

z-Score $(X-\bar{X})/s$	T-Score $10z + 50$	Wechsler IQ $(15z + 100)$	Percentile Rank
3.0	80	145	99.9
2.9	79	144	99.8
2.8	78	142	99.7
2.7	77	141	99.6
2.6	76	139	99.5
2.5	75	138	99.4
2.4	74	136	99.2
2.3	73	135	98.9
2.2	72	133	98.6
2.1	71	132	98.2
2.0	70	130	97.7
1.9	69	129	97.1

226

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Norms 1

- Standard Scores provide us with a way of describing how a particular score relates to others in the population.
- Describing how an individual score relates to the population, which we assume are “normal”.
- Terms “normative data” and “norms”
- Key questions: What is the normative group? What features or factors of the group may affect scores?

227

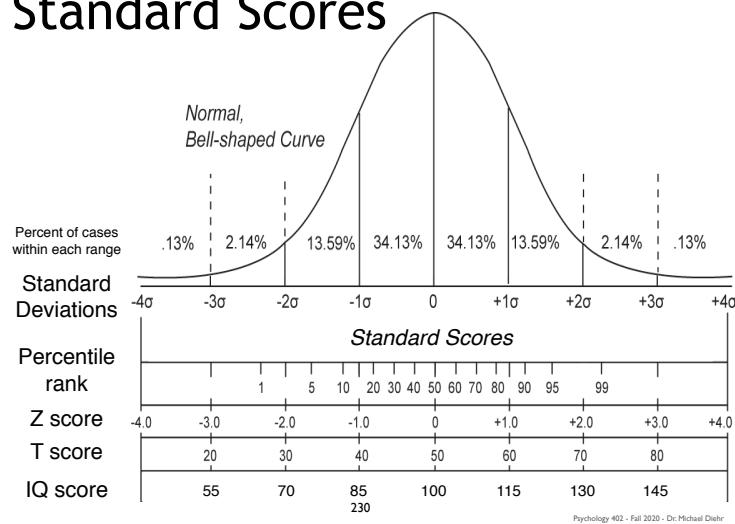
Psychology 402 - Fall 2020 - Dr. Michael Diehr

Norms 2

- “norm-referenced” tests vs. “criterion-referenced” tests.
Example: an 85 year old in excellent shape could be in the top 5% of his class for firefighting ability, but this may still be a “failing” grade.
- Common factors that may matter:
- Gender, Age, Education, Ethnicity/Race, Language, Handedness, Height, Weight...

228

Psychology 402 - Fall 2020 - Dr. Michael Diehr


Z-score Exercise

- This is for practice, not graded for points
- PDF is on class website

229

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Standard Scores

Standard Scores: Z, T, IQ

	Z scores	T scores	IQ scores
Mean	0	50	100
SD	1	10	15
Example: top 3%	1.9		
Example: top 1%	2.4		
Formula to convert from Z Score	Z	$(Z \cdot 10) + 50$	$(Z \cdot 15) + 100$

231

Psychology 402 - Fall 2020 - Dr. Michael Diehr

Intermission

- End of Part 3
- End of Chapter 2 Lecture

232

Psychology 402 - Fall 2020 - Dr. Michael Diehr