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Norms and Basic 
Statistics for Testing

LEARNING OBJECTIVES
When you have completed this chapter, you should be able to:

■ Discuss three properties of scales of measurement

■ Determine why properties of scales are important in the field of 
measurement

■ Identify methods for displaying distributions of scores

■ Calculate the mean and the standard deviation for a set of scores

■ Define a Z score and explain how it is used

■ Relate the concepts of mean, standard deviation, and Z score to the concept 
of a standard normal distribution

■ Define quartiles, deciles, and stanines and explain how they are used

■ Tell how norms are created

■ Relate the notion of tracking to the establishment of norms
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26 CHAPTER 2 ■ Norms and Basic Statistics for Testing

We all use numbers as a basic way of communicating: Our money system re­
quires us to understand and manipulate numbers, we estimate how long it 
will take to do things, we count, we express evaluations on scales, and so 
on. Think about how many times you use numbers in an average day. There is no 

way to avoid them.
One advantage of number systems is that they allow us to manipulate informa­

tion. Through sets of well-defined rules, we can use numbers to learn more about 
the world. Tests are devices used to translate observations into numbers. Because the 
outcome of a test is almost always represented as a score, much of this book is about 
what scores mean. This chapter reviews some of the basic rules used to evaluate 
number systems. These rules and number systems are the psychologist’s partners in 
learning about human behavior.

If you have had a course in psychological statistics, then this chapter will re­
inforce the basic concepts you have already learned. If you need additional review, 
reread your introductory statistics book. Most such books cover the information in 
this chapter. If you have not had a course in statistics, then this chapter will provide 
some of the information needed for understanding other chapters in this book.

WHY WE NEED STATISTICS
Through its commitment to the scientific method, modern psychology has advanced 
beyond centuries of speculation about human nature. Scientific study requires sys­
tematic observations and an estimation of the extent to which observations could 
have been influenced by chance alone (Salkind, 2007). Statistical methods serve two 
important purposes in the quest for scientific understanding.

First, statistics are used for purposes of description. Numbers provide con­
venient summaries and allow us to evaluate some observations relative to others 
(Cohen 8c Lea, 2004; Pagano, 2004; Thompson, 2006). For example, if you get 
a score of 54 on a psychology examination, you probably want to know what the 
54 means. Is it lower than the average score, or is it about the same? Knowing the 
answer can make the feedback you get from your examination more meaningful. If 
you discover that the 54 puts you in the top 5% of the class, then you might assume 
you have a good chance for an A. If it puts you in the bottom 5%, then you will feel 
diflFerently.

Second, we can use statistics to make inferences, which are logical deductions 
about events that cannot be observed directly. For example, you do not know how 
many people watched a particular television movie unless you ask everyone. How­
ever, by using scientific sample surveys, you can infer the percentage of people who 
saw the film. Data gathering and analysis might be considered analogous to criminal 
investigation and prosecution (Cox, 2006; Regenwetter, 2006; Tukey, 1977). First 
comes the detective work of gathering and displaying clues, or what the statistician 
John Tukey calls exploratory data analysis. Then comes a period of confirmatory data 
analysis, when the clues are evaluated against rigid statistical rules. This latter phase 
is like the work done by judges and juries.

Some students have an aversion to numbers and anything mathematical. If you 
find yourself among them, you are not alone. Not only students but also professional 
psychologists can feel uneasy about statistics. However, statistics and the basic
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principles of measurement lie at the center of the modern science of psychology. 
Scientific statements are usually based on careful study, and such systematic study 
requires some numerical analysis.

This chapter reviews both descriptive and inferential statistics. Descriptive 
statistics are methods used to provide a concise description of a collection of quan­
titative information. Inferential statistics are methods used to make inferences 
from observations of a small group of people known as a sample to a larger group of 
individuals known as a population. Typically, the psychologist wants to make state­
ments about the larger group but cannot possibly make all the necessary observa­
tions. Instead, he or she observes a relatively small group of subjects (sample) and 
uses inferential statistics to estimate the characteristics of the larger group (Salkind, 
2007).

SCALES OF MEASUREMENT
One may define measurement as the application of rules for assigning numbers to ob­
jects. The rules are the specific procedures used to transform qualities of attributes 
into numbers (Camilli, Cizek, & Lugg, 2001; Nunnally 6c Bernstein, 1994; Yanai, 
2003). For example, to rate the quality of wines, wine tasters must use a specific set 
of rules. They might rate the wine on a 10-point scale where 1 means extremely bad 
and 10 means extremely good. For a taster to assign the numbers, the system of rules 
must be clearly defined. The basic feature of these types of systems is the scale of 
measurement. For example, to measure the height of your classmates, you might use 
the scale of inches; to measure their weight, you might use the scale of pounds.

There are numerous systems by which we assign numbers in psychology. In­
deed, the study of measurement systems is what this book is about. Before we con­
sider any specific scale of measurement, however, we should consider the general 
properties of measurement scales.

Properties of Scales
Three important properties make scales of measurement different from one another: 
magnitude, equal intervals, and an absolute 0.

Magnitude
Magnitude is the property of “moreness.” A scale has the property of magnitude if 
we can say that a particular instance of the attribute represents more, less, or equal 
amounts of the given quantity than does another instance (Aron 6c Aron, 2003; 
Hurlburt, 2003; McCall, 2001; Howell, 2008). On a scale of height, for example, 
if we can say that John is taller than Fred, then the scale has the property of mag­
nitude. A scale that does not have this property arises, for example, when a gym 
coach assigns identification numbers to teams in a league (team 1, team 2, and so 
forth). Because the numbers only label the teams, they do not have the property of 
magnitude. If the coach were to rank the teams by the number of games they have 
won, then the new numbering system (games won) would have the property of 
magnitude.
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FIGURE 2.1 Hypothetical relationship between ratings of artwork and manual 
dexterity. In some ranges of the scale, the relationship is more direct than it is in 
others.

Equal Intervals
The concept of equal intervals is a little more complex than that of magnitude. 
A scale has the property of equal intervals if the difference between two points 
at any place on the scale has the same meaning as the difference between two 
other points that differ by the same number of scale units. For example, the differ­
ence between inch 2 and inch 4 on a ruler represents the same quantity as the dif­
ference between inch 10 and inch 12: exactly 2 inches.

As simple as this concept seems, a psychological test rarely has the property of 
equal intervals. For example, the difference between Intelligence Quotients (IQs) of 
45 and 50 does not mean the same thing as the difference between IQs of 105 and 
110. Although each of these differences is 5 points (50 — 45 = 5 and 110 — 105 = 5), 
the 5 points at the first level do not mean the same thing as 5 points at the sec­
ond. We know that IQ_predicts classroom performance. However, the difference 
in classroom performance associated with differences between IQ_scores of 45 and 
50 is not the same as the differences in classroom performance associated with IQ_ 
score differences of 105 and 110. In later chapters we will discuss this problem in 
more detail.

When a scale has the property of equal intervals^ the relationship between the 
measured units and some outcome can be described by a straight line or a linear 
equation in the form Y = a + bX. This equation shows that an increase in equal 
units on a given scale reflects equal increases in the meaningful correlates of units. 
For example. Figure 2.1 shows the hypothetical relationship between scores on a 
test of manual dexterity and ratings of artwork. Notice that the relationship is not 
a straight line. By examining the points on the figure, you can see that at first the 
relationship is nearly linear: Increases in manual dexterity are associated with in­
creases in ratings of artwork. Then the relationship becomes nonlinear. The figure 
shows that after a manual dexterity score of approximately 5, increases in dexterity 
produce relatively smaller increases in quality of artwork.
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TABLE 2.1
Scales of Measurement and Their Properties

29

Type of scale

Property

Magnitude Equal intervals Absolute 0

Nominal No No No
Ordinal Yes No No
Interval Yes Yes No
Ratio Yes Yes Yes

Absolute 0
An absolute 0 is obtained when nothing of the property being measured exists. For 
example, if you are measuring heart rate and observe that your patient has a rate 
of 0 and has died, then you would conclude that there is no heart rate at all. For 
many psychological qualities, it is extremely difficult, if not impossible, to define an 
absolute 0 point. For example, if one measures shyness on a scale from 0 through 
10, then it is hard to define what it means for a person to have absolutely no shyness 
(McCall, 2001).

Types of Scales
Table 2.1 defines four scales of measurement based on the properties we have just 
discussed. You can see that a nominal scale does not have the property of magni­
tude, equal intervals, or an absolute 0. Nominal scales are really not scales at all; 
their only purpose is to name objects. For example, the numbers on the backs of 
football players’ uniforms are nominal. Nominal scales are used when the informa­
tion is qualitative rather than quantitative. Social science researchers commonly 
label groups in sample surveys with numbers (such as 1 = African American, 2 = 
white, and 3 = Mexican American). When these numbers have been attached to 
categories, most statistical procedures are not meaningful. On the scale for ethnic 
groups, for instance, what would a mean of 1.87 signify? This is not to say that 
the sophisticated statistical analysis of nominal data is impossible. Indeed, several 
new and exciting developments in data analysis allow extensive and detailed use of 
nominal data (Chen, 2002; Miller, Scurfield, Drga, Galvin, 8c Whitmore, 2002; 
Stout, 2002).

A scale with the property of magnitude but not equal intervals or an absolute 
0 is an ordinal scale. This scale allows you to rank individuals or objects but not to 
say anything about the meaning of the differences between the ranks. If you were 
to rank the members of your class by height, then you would have an ordinal scale. 
For example, if Fred was the tallest, Susan the second tallest, and George the third 
tallest, you would assign them the ranks 1, 2, and 3, respectively. You would not 
give any consideration to the fact that Fred is 8 inches taller than Susan, but Susan 
is only 2 inches taller than George.

For most problems in psychology, the precision to measure the exact differ­
ences between intervals does not exist. So, most often one must use ordinal scales of
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measurement. For example, IQ_tests do not have the property of equal intervals or 
an absolute 0, but they do have the property of magnitude. If they had the property 
of equal intervals, then the difference between an IQ_of 70 and one of 90 should 
have the same meaning as the difference between an IQpf 125 and one of 145. Be­
cause it does not, the scale can only be considered ordinal. Furthermore, there is no 
point on the scale that represents no intelligence at all—that is, the scale does not 
have an absolute 0.

When a scale has the properties of magnitude and equal intervals but not abso­
lute 0, we refer to it as an interval scale. The most common example of an interval 
scale is the measurement of temperature in degrees Fahrenheit. This temperature 
scale clearly has the property of magnitude, because 35°F is warmer than 32°F, 
65°F is warmer than 64°F, and so on. Also, the difference between 90°F and 80°F is 
equal to a similar difference of 10° at any point on the scale. However, on the Fahr­
enheit scale, temperature does not have the property of absolute 0. If it did, then the 
0 point would be more meaningful. As it is, 0 on the Fahrenheit scale does not have 
a particular meaning. Water freezes at 32°F and boils at 212°F. Because the scale 
does not have an absolute 0, we cannot make statements in terms of ratios. A tem­
perature of 22°F is not twice as hot as 11°F, and 70°F is not twice as hot as 35°F.

The Celsius scale of temperature is also an interval rather than a ratio scale. 
Although 0 represents freezing on the Celsius scale, it is not an absolute 0. Remem­
ber that an absolute 0 is a point at which nothing of the property being measured 
exists. Even on the Celsius scale of temperature, there is still plenty of room on the 
thermometer below 0. When the temperature goes below freezing, some aspect of 
heat is still being measured.

A scale that has all three properties (magnitude, equal intervals, and an abso­
lute 0) is called a ratio scale. To continue our example, a ratio scale of temperature 
would have the properties of the Fahrenheit and Celsius scales but also include a 
meaningful 0 point. There is a point at which all molecular activity ceases, a point of 
absolute 0 on a temperature scale. Because the Kelvin scale is based on the absolute 
0 point, it is a ratio scale: 22°K is twice as cold as 44°K. Examples of ratio scales also 
appear in the numbers we see on a regular basis. For example, consider the number 
of yards gained by running backs on football teams. Zero yards actually means 
that the player has gained no yards at all. If one player has gained 1000 yards and 
another has gained only 500, then we can say that the first athlete has gained twice 
as many yards as the second.

Another example is the speed of travel. For instance, 0 miles per hour (mph) 
is the point at which there is no speed at all. If you are driving onto a highway at 
30 mph and increase your speed to 60 when you merge, then you have doubled your 
speed.

Permissible Operations
Level of measurement is important because it defines which mathematical opera­
tions we can apply to numerical data. For nominal data, each observation can be 
placed in only one mutually exclusive category. For example, you are a member of 
only one gender. One can use nominal data to create frequency distributions (see 
the next section), but no mathematical manipulations of the data are permissible. 
Ordinal measurements can be manipulated using arithmetic; however, the result is
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often difficult to interpret because it reflects neither the magnitudes of the manipu­
lated observations nor the true amounts of the property that have been measured. 
For example, if the heights of 15 children are rank ordered, knowing a given child’s 
rank does not reveal how tall he or she stands. Averages of these ranks are equally 
uninformative about height.

With interval data, one can apply any arithmetic operation to the differences 
between scores. The results can be interpreted in relation to the magnitudes of the 
underlying property. However, interval data cannot be used to make statements 
about ratios. For example, if IQjs measured on an interval scale, one cannot say that 
an IQ_pf 160 is twice as high as an IQpf 80. This mathematical operation is reserved 
for ratio scales, for which any mathematical operation is permissible.

FREQUENCY DISTRIBUTIONS
A single test score means more if one relates it to other test scores. A distribution of 
scores summarizes the scores for a group of individuals. In testing, there are many 
ways to record a distribution of scores.

The frequency distribution displays scores on a variable or a measure to reflect 
how frequently each value was obtained. With a frequency distribution, one defines 
all the possible scores and determines how many people obtained each of those 
scores. Usually, scores are arranged on the horizontal axis from the lowest to the 
highest value. The vertical axis reflects how many times each of the values on the 
horizontal axis was observed. For most distributions of test scores, the frequency 
distribution is bell-shaped, with the greatest frequency of scores toward the center 
of the distribution and decreasing scores as the values become greater or less than 
the value in the center of the distribution.

Figure 2.2 shows a frequency distribution of 1000 observations that takes on 
values between 61 and 90. Notice that the most frequent observations fall toward

100

62 64 66 68 70 72 74 76 78 80 82 84 86 88 90
Score

FIGURE 2.2 Frequency distribution approximating a normal distribution 
of 1000 observations.
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the center of the distribution, around 75 and 76. As you look toward the extremes 
of the distribution, you will find a systematic decline in the frequency with which 
the scores occur. For example, the score of 71 is observed less frequently than 72, 
which is observed less frequently than 73, and so on. Similarly, 78 is observed more 
frequently than 79, which is noted more often than 80, and so forth.

Though this neat symmetric relationship does not characterize all sets of scores, 
it occurs frequently enough in practice for us to devote special attention to it. In the 
section on the normal distribution, we explain this concept in greater detail.

Table 2.2 lists the rainfall amounts in San Diego, California, between 1964 
and 2007. Figure 2.3 is a histogram based on the observations. The distribution is

TABLE 2.2
Inches of Rainfall in San Diego, 1964-2007

Year Rainfall (Inches) Year Rainfall (Inches)

1964 5.15 1988 12.44
1965 8.81 1989 5.88
1966 14.76 1990 7.62
1967 10.86 1991 12.31
1968 7.86 1992 12.48
1969 11.48 1993 18.26
1970 6.23 1994 9.93
1971 8.03 1995 17.13
1972 6.12 1996 5.18
1973 10.99 1997 8.74
1974 6.59 1998 20.89
1975 10.64 1999 6.51
1976 10.14 2000 5.77
1977 9.18 2001 8.82
1978 17.3 2002 3.44
1979 14.93 2003 10.24
1980 15.62 2004 5.31
1981 8.13 2005 22.81
1982 11.85 2006 5.35
1983 18.49 2007 3.62
1984 5.37 Sum 454.8
1985 9.6 Mean 10.34
1986 14.64 Standard 4.71
1987 9.3 Deviation

Data from http://cdec.water.ca,gov.

I

http://cdec.water.ca,gov
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0-3 3.1-6 6.1-9 9.1-12 12.1-15 15.1-18 18.1-21 21.1-24 24.1-27
Inches of Rainfall

FIGURE 2.3 Histogram for San Diego rainfall, 1964-2007.

FIGURE 2.4 Frequency polygon for rainfall in San Diego, 1964-2007.

slightly skewed, or asymmetrical. We say that Figure 2.3 has a positive skew because 
the tail goes off toward the higher or positive side of the X axis. There is a slight 
skew in Figures 2.3 and 2.4, but the asymmetry in these figures is relatively hard 
to detect. Figure 2.5 gives an example of a distribution that is clearly skewed. The 
figure summarizes annual household income in the United States in 2007. Very 
few people make high incomes, while the great bulk of the population is bunched 
toward the low end of the income distribution. Of particular interest is that this 
figure only includes household incomes less than S100,000. For household incomes 
greater than S100,000, the government only reports incomes using class intervals 
of $50,000. In 2007, about 16% of the U.S. households had incomes greater than 
$100,000. Because some households have extremely high incomes, you can imagine 
that the tail of this distribution would go very far to the right. Thus, income is an 
example of a variable that has positive skew.

One can also present this same set of data as a frequency polygon (see Figure 2.4). 
Here the amount of rainfall is placed on the graph as a point that represents the
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Personal Income (US$)

FIGURE 2.5 Household income up to $100,000 in the United States for 2007.
This is an example of positive skew.

(Data from the United States Department of Labor Statistics and the Bureau the Census. httpV/ferret.bIs. census 
.gov/macro/ 032003/hhinc/ new06_000.htm.)

frequencies with which each interval occurs. Lines are then drawn to connect these 
points.

Whenever you draw a frequency distribution or a frequency polygon, you must 
decide on the width of the class interval. The class interval for inches of rainfall 
is the unit on the horizontal axis. For example, in Figures 2.3 and 2.4, the class 
interval is 3 inches—that is, the demarcations along the X axis increase in 3-inch 
intervals. This interval is used here for convenience; the choice of 3 inches is other­
wise arbitrary.

PERCENTILE RANKS
Percentile ranks replace simple ranks when we want to adjust for the number of 
scores in a group. A percentile rank answers the question “What percent of the 
scores fall below a particular score (A,)?” To calculate a percentile rank, you need 
only follow these simple steps: (1) determine how many cases fall below the score of 
interest, (2) determine how many cases are in the group, (3) divide the number of 
cases below the score of interest (Step 1) by the total number of cases in the group 
(Step 2), and (4) multiply the result of Step 3 by 100.



CHAPTER 2 • Norms and Basic Statistics for Testing 35

The formula is

P = — X100 = percentile rank of X

where

P, = percentile rank 
Xi = the score of interest 
B = the number of scores below X^

N = the total number of scores

This means that you form a ratio of the number of cases below the score of interest 
and the total number of scores. Because there will always be either the same or fewer 
cases in the numerator (top half) of the equation than there are in the denomina­
tor (bottom half), this ratio will always be less than or equal to 1. To get rid of the 
decimal points, you multiply by 100.

As an example, consider the runner who finishes 62nd out of 63 racers in a gym 
class. To obtain the percentile rank, divide 1 (the number of people who finish be­
hind the person of interest) by 63 (the number of scores in the group). This gives you 
1/63, or .016. Then multiply this result by 100 to obtain the percentile rank, which 
is 1.6. This rank tells you the runner is below the 2nd percentile.

Now consider the Bay to Breakers race, which attracts 50,000 runners to San 
Francisco. If you had finished 62nd out of 50,000, then the number of people who 
were behind you would be 49,938. Dividing this by the number of entrants gives 
.9988. When you multiply by 100, you get a percentile rank of 99.88. This tells you 
that finishing 62nd in the Bay to Breakers race is exceptionally good because it 
places you in the 99.88th percentile.

Psychological Testing in Everyday Life 2.1 presents the calculation of percen­
tile ranks of the infant mortality rates of selected countries as reported by the World 
Health Organization in 2007. Infant mortality is defined as the number of babies 
out of 1000 who are born alive but die before their first birthday. Before proceeding, 
we should point out that the meaning of this calculation depends on which coun­
tries are used in the comparison.

In this example, the calculation of the percentile rank is broken into five steps 
and uses the raw data in the table. In Step 1, we arrange the data points in ascending 
order. Singapore has the lowest infant mortality rate (2.3), Japan is next (2.8), and 
Afghanistan has the highest rate (157.0).

In Step 2, we determine the number of cases with worse rates than that of the 
case of interest. In this example, the case of interest is the United States. Therefore, 
we count the number of cases with a worse rate than that of the United States. 
Eleven countries—Israel, Saudi Arabia, Colombia, China, Turkey, Morocco, 
Bolivia, Laos, Ethiopia, Mozambique, and Afghanistan—have infant mortality 
rates greater than 6.4.
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PSYCHOLOGICAL TESTING IN EVERYDAY LIFE 2.1 
Infant Mortality in Selected Countries, 2007

Infant Mortality per
Country 1000 Live Births

Afghanistan 157.0

Australia 4.6

Bolivia 45.6

China 23.0

Colombia 19.1

Ethiopia 86.9

France 3.4

Israel 6.8

Italy 5.7

Japan 2.8

Laos 51.4

Morocco 30.6

Mozambique 95.9

Saudi Arabia 18.8

Singapore 2.3

Spain 4.3

Turkey 27.5

United States 6.4

Mean 32.9

SD 41.9

To calculate the percentile rank of infant mortality in the United States in 
comparison to that in selected countries, use the following formula:

T = — X100 
' N

where
P = the percentile rank
P = the number of cases with worse rates than the case of interest 
N = the total number of cases
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Country
Infant Mortality per 

1000 Live Births

Singapore 2.3
Japan 2.8
France 3.4
Spain 4.3
Australia 4.6
Italy 5.7
United States 6.4
Israel 6.8
Saudi Arabia 18.8
Colombia 19.1
China 23.0
Turkey 27.5
Morocco 30.6
Bolivia 45.6
Laos 51.4
Ethiopia 86.9
Mozambique 95.9
Afghanistan 157.0

STEPS
1. Arrange data in ascending order—that is, the lowest score first, the second 

lowest score second, and so on.

= 18, mean = 32.9, standard deviation = 41.9

2. Determine the number of cases with worse rates than the score of interest. 
There are 11 countries in this sample with infant mortality rates greater 
than that in the United States.

3. Determine the number of cases in the sample (18).
4. Divide the number of scores worse than the score of interest (Step 2) by the 

total number of scores (Step 3):

5. Multiply by 100:

.61 X 100 = 61st percentile rank
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In Step 3, we determine the total number of cases (18).
In Step 4, we divide the number of scores worse than the score of interest by the 

total number of scores;

Technically, the percentile rank is a percentage. Step 4 gives a proportion. There­
fore, in Step 5 you transform this into a whole number by multiplying by 100:

.61 X 100 = 61

Thus, the United States is in the 61st percentile.
The percentile rank depends absolutely on the cases used for comparison. In 

this example, you calculated that the United States is in the 61st percentile for in­
fant mortality within this group of countries. If all countries in the world had been 
included, then the ranking of the United States might have been different.

Using this procedure, try to calculate the percentile rank for Bolivia. The cal­
culation is the same except that there are four countries with worse rates than Bo­
livia (as opposed to 11 worse than the United States). Thus, the percentile rank for 
Bolivia is

-^ = .22X100 = 22
18

or the 22nd percentile. Now try France. You should get a percentile rank of 83.

PERCENTILES
Percentiles are the specific scores or points within a distribution. Percentiles divide 
the total frequency for a set of observations into hundredths. Instead of indicating 
what percentage of scores fall below a particular score, as percentile ranks do, percen­
tiles indicate the particular score, below which a defined percentage of scores falls.

Try to calculate the percentile and percentile rank for some of the data in Psy­
chological Testing in Everyday Life 2.1. As an example, look at Italy. The infant 
mortality rate in Italy is 5.72/1000. When calculating the percentile rank, you 
exclude the score of interest and count those below (in other words, Italy is not 
included in the count). There are 12 countries in this sample with infant mortal­
ity rates worse than Italy’s. To calculate the percentile rank, divide this number of 
countries by the total number of cases and multiply by 100:

P =-^Xl00 = —X100 = .67X100 = 67 
’ N 18

Thus, Italy is in the 67th percentile rank, or the 67th percentile in this example is 
5.72/1000 or 5.72 deaths per 1000 live births.

Now take the example of Israel. The calculation of percentile rank requires look­
ing at the number of cases below the case of interest. In this example, 10 countries
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in this group have infant mortality rates worse than Israel’s. Thus, the percentile 
rank for Israel is 10/18 X 100 = 56. The 56th percentile corresponds with the point 
or score of 6.75 (6.75/1000 live births).

In summary, the percentile and the percentile rank are similar. The percen­
tile gives the point in a distribution below which a specified percentage of cases 
fall (6.75/1000 for Israel). The percentile is in raw score units. The percentile rank 
gives the percentage of cases below the percentile; in this example, the percentile 
rank is 56.

When reporting percentiles and percentile ranks, you must carefully specify 
the population you are working with. Remember that a percentile rank is a measure 
of relative performance. When interpreting a percentile rank, you should always ask 
the question “Relative to what?” Suppose, for instance, that you finished in the 17th 
percentile in a swimming race (or fifth in a heat of six competitors). Does this mean 
that you are a slow swimmer? Not necessarily. It may be that this was a heat in the 
Olympic games, and the participants were the fastest swimmers in the world. An 
Olympic swimmer competing against a random sample of all people in the world 
would probably finish in the 99.99th percentile. The example for infant mortality 
rates depends on which countries in the world were selected for comparison. The 
United States actually does quite poorly when compared with European countries 
and the advanced economies in Asia (Singapore and Japan). However, the U.S. in­
fant mortality rate looks much better compared with countries in the developing 
world.'

DESCRIBING DISTRIBUTIONS
Mean
Statistics are used to summarize data. If you consider a set of scores, the mass of 
information may be too much to interpret all at once. That is why we need numeri­
cal conveniences to help summarize the information. An example of a set of scores 
that can be summarized is shown in Table 2.2 (see page 32), amounts of rainfall in 
San Diego. We signify the variable as X. A variable is a score that can have differ­
ent values. The amount of rain is a variable because different amounts of rain fell in 
different years.

The arithmetic average score in a distribution is called the mean. To calculate 
the mean, we total the scores and divide the sum by the number of cases, or N. The 
capital Greek letter sigma (S) means summation. Thus, the formula for the mean, 
which we signify as X, is

'We used a similar example in the last edition based on data from 2003. By 2007, there were signifi­
cant improvements in the infant mortality rates in developing countries. The rate for Mozambique 
declined from 148.6 down to 95.9 per thousand live births. Ethiopia reduced its infant mortality rate 
from 142.6 to 86.9. However, the rates worsened slightly for several developed countries, including 
Israel, Italy, and Spain.
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In words, this formula says to total the scores and divide the sum by the number 
of cases. Using the information in Table 2.2, we find the mean by following these 
steps:

1. Obtain hX, or the sum of the scores: 5.15 + 8.81 + 14.76 + 10.86 +
7.86 + - + 3.62 = 454.80

2. Find N, or the number of scores:

N= 44

3. Divide 'ZXhy N: 454.80/44 = 10.34

Psychological Testing in Everyday Life 2.2 summarizes common symbols used in 
basic statistics.

Standard Deviation
The standard deviation is an approximation of the average deviation around the 
mean. The standard deviation for the amount of rainfall in San Diego is 4.71. To 
understand rainfall in San Diego, you need to consider at least two dimensions: first, 
the amount of rain that falls in a particular year; second, the degree of variation 
from year to year in the amount of rain that falls. The calculation suggests that, on 
the average, the variation around the mean is approximately 4.71 inches.

However informative, knowing the mean of a group of scores does not give you 
that much information. As an illustration, look at the following sets of numbers.

Set 1 Set 2 Set 3
4 5 8
4 5 8
4 4 6
4 4 2
4 3 0
4 3 0

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE 2.2 
Common Symbols

You need to understand and recognize the symbols used throughout this book. 
X is the mean; it is pronounced “X bar.” 2 is the summation sign. It means 
sum, or add, scores together and is the capital Greek letter sigma. A is a vari­
able that takes on different values. Each value of A, represents a raw score, also 
called an obtained score.
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Calculate the mean of the first set. You should get 4. What is the mean of the 
second set? If you calculate correctly, you should get 4 again. Next find the mean for 
Set 3. It is also 4. The three distributions of scores appear quite different hut have 
the same mean, so it is important to consider other characteristics of the distribution 
of scores besides the mean. The difference between the three sets lies in variability. 
There is no variability in Set 1, a small amount in Set 2, and a lot in Set 3.

Measuring this variation is similar to finding the average deviation around 
the mean. One way to measure variability is to subtract the mean from each score 
{X — X) and then total the deviations. Statisticians often signify this with a low­
ercase X, as in X = (X — X). Try this for the data in Table 2.2. Did you get 0? You 
should have, and this is not an unusual example. In fact, the sum of the deviations 
around the mean will always equal 0. However, you do have an alternative: You can 
square all the deviations around the mean in order to get rid of any negative signs. 
Then you can obtain the average squared deviation around the mean, known as the 
variance. The formula for the variance is

, ^{x-xy
a =--------------

N

where (X — X) is the deviation of a score from the mean. The symbol a is the low­
ercase Greek sigma; cH is used as a standard description of the variance.

Though the variance is a useful statistic commonly used in data analysis, it 
shows the variable in squared deviations around the mean rather than in deviations 
around the mean. In other words, the variance is the average squared deviation 
around the mean. To get it back into the units that will make sense to us, we need to 
take the square root of the variance. The square root of the variance is the standard 
deviation (cr), and it is represented by the following formula

_ x(x-xy
^ \ N

The standard deviation is thus the square root of the average squared deviation 
around the mean. Although the standard deviation is not an average deviation, it 
gives a useful approximation of how much a typical score is above or below the aver­
age score.

Because of their mathematical properties, the variance and the standard de­
viation have many advantages. For example, knowing the standard deviation of a 
normally distributed batch of data allows us to make precise statements about the 
distribution. The formulas just presented are for computing the variance and the 
standard deviation of a population. That is why we use the lowercase Greek sigma 
(a and o^). Psychological Testing in Everyday Life 2.3 summarizes when you 
should use Greek and Roman letters. Most often we use the standard deviation 
for a sample to estimate the standard deviation for a population. When we talk 
about a sample, we replace the Greek cr with a Roman letter S. Also, we divide by
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N — 1 rather than A^to recognize that 5 of a sample is only an estimate of the vari­
ance of the population.

S =
ijx-xy

N-1

In calculating the standard deviation, it is often easier to use the raw score equiva­
lent formula, which is

S =
'S.X^- gxy

N
N-\

This calculation can also be done automatically by some minicalculators.
In reading the formula, you may be confused by a few points. In particular, be 

careful not to confuse and (^X)^. To get XX^, each individual score is squared 
and the values are summed. For the scores 3,5,7, and 8, would be 3^ + 5^ + 7^ + 
g2 = 9 + 25 + 49 + 64 = 147. To obtain (SAT)^, the scores are first summed and the 
total is squared. Using the example, {XX)^ = (3 + 5 + 7 + 8)^ = 23^ = 529.

Z Score
One problem with means and standard deviations is that they do not convey enough 
information for us to make meaningful assessments or accurate interpretations 
of data. Other metrics are designed for more exact interpretations. The Z score

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE 2.3
Terms and Symbols Used to Describe Populations and Samples

Population Sample

Definition All elements with the A subset of the population,
same definition usually drawn to represent 

it in an unbiased fashion

Descriptive characteristics Parameters Statistics

Symbols used to describe Greek Roman

Symbol for mean X

Symbol for standard deviation (T S
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transforms data into standardized units that are easier to interpret. A Z score is the 
difference between a score and the mean, divided by the standard deviation:

Z =
X -X

I

s
In other words, a Z score is the deviation of a score X^ from the mean X in 

standard deviation units. If a score is equal to the mean, then its Z score is 0. For 
example, suppose the score and the mean are both 6; then 6 — 6 = 0. Zero divided 
by anything is still 0. If the score is greater than the mean, then the Z score is posi­
tive; if the score is less than the mean, then the Z score is negative.

Let’s try an example. Suppose that A, = 6, the mean A = 3, and the standard 
deviation S = 3. Plugging these values into the formula, we get

Z = ^ = l = l
3 3

Let’s try another example. Suppose Aj = 4, A = 5.75, and S = 2.11. What is 
the Z score? It is —.83:

4-5.74
2.11

-1.74
2.11

This means that the score we observed (4) is .83 standard deviation below the aver­
age score, or that the score is below the mean but its difference from the mean is 
slightly less than the average deviation.

Example of Depression in Medical Students: Center for 
Epidemiologic Studies Depression Scale (CES-D)
The CES-D is a general measure of depression that has been used extensively in epi­
demiological studies. The scale includes 20 items and taps dimensions of depressed 
mood, hopelessness, appetite loss, sleep disturbance, and energy level. Each year, 
students at the University of California, San Diego, School of Medicine are asked 
to report how often they experienced a particular symptom during the first week of 
school on a 4-point scale ranging from rarely or none of the time [0 to 1 days (0)] to 
most or all of the time [5 to 7 days (3)]. Items 4, 8,12, and 16 on the CES-D are re­
verse scored. For these items, 0 is scored as 3,1 is scored as 2, 2 as 1, and 3 as 0. The 
CES-D score is obtained by summing the circled numbers. Scores on the CES-D 
range from 0 to 60, with scores greater than 16 indicating clinically significant levels 
of depressive symptomatology in adults.

Feel free to take the CES-D measure yourself. Calculate your score by summing 
the numbers you have circled. However, you must first reverse the scores on items 4, 
8,12, and 16. As you will see in Chapter 5, the CES-D does not have high validity 
for determining clinical depression. If your score is less than 16, the evidence sug­
gests that you are not clinically depressed. If your score is high, it raises suspicions 
about depression—though this does not mean you have a problem. (Of course, you 
may want to talk with your college counselor if you are feeling depressed.)
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Center for Epidemiologic Studies Depression Scale (CES-D)

Instructions: Circle the number for each statement that best describes how often you felt or behaved this way 
DURING THE PAST WEEK.

Rarely or 
none of the 
time (less 

than 1 day)

Some or a 
little of 
the time 
(1-2 days)

Occasionally 
ora moderate 

amount of 
the time 

(3-4 days)

Most or all 
of the time 
(5-7 days)

1. I was bothered by things that usually
don't bother me.................................. 0

2. I did not feel like eating....................... 0
3. I felt that I could not shake off the 

blues even with help from my family
or friends............................................. 0

R 4. I felt that I was just as good as other
people................................................. 0

5. I had trouble keeping my mind on what
I was doing.......................................... 0

6. I felt depressed................................... 0
7. I felt that everything I did was an effort. 0

R 8. I felt hopeful about the future.............. 0
9. I thought my life had been a failure......  0

10. I felt fearful........................................... 0
11. My sleep was restless........................... 0

R 12. I was happy ........................................ 0
13. I talked less than usual.......................... 0
14. I felt lonely........................................... 0
15. People were unfriendly......................... 0

R 16. I enjoyed life........................................ 0
17. I had crying spells................................. 0
18. I felt sad.............................................. 0
19. I felt that people disliked me................ 0
20. I could not get "going.” ....................... 0

1 ............ 2 ......... 3
1 ............ 2 ..........3

1 ............ 2 ..........3

1 ............ 2 ......... 3

1
1
1
1
1
1
1
1

,1
.1
.1
.1
.1
.1
.1
.1

2
2
2
2
2

,2
.2
.2
.2
.2
.2
.2
.2
.2
.2
.2

3
3
3
3
3
3

.3

.3

.3

.3

.3

.3

.3

.3

.3

.3

Table 2.3 shows CES-D scores for a selected sample of medical students. 
You can use these data to practice calculating means, standard deviations, and 
Z scores.

In creating the frequency distribution for the CES-D scores of medical stu­
dents we used an arbitrary class interval of 5.
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TABLE 2.3
The Calculation of Mean, Standard Deviation, and Z Scores 
for CES-D Scores

45

Name Test score (X) JC Z score

John 14 196 .42
Carla 10 100 -.15
Fred 8 64 -.44
Monica 8 64 -.44
Eng 26 676 2.13
Fritz 0 0 -1.58
Mary 14 196 .42
Susan 3 9 -1.15
Debbie 9 81 -.29
Elizabeth 10 100 -.15
Sarah 7 49 -.58
Marcel 12 144 .14
Robin 10 100 -.15
Mike 25 625 1.99
Carl 9 81 .29
Phyllis 12 144 .14
Jennie 23 529 1.70
Richard 7 49 -.58
Tyier 13 169 .28
Frank 1 1 -1.43

IX =221 IX* = 3377

N 20

3377-i^
S = \l----- =\l----------------- =7.01

20-1

„ . , _ X-X 8-11.05
Monica s Z score =-------=------------ = -.44

S 7.01

X-X 12-11.05 _
Marcels Z score= —r— =-------------= .14

S 7.01

X-X 23-11.05
Jennie s Z score=—-— =-------------= 1.70

S 7.01

Standard Normal Distribution
Now we consider the standard normal distribution because it is central to statistics 
and psychological testing. First, though, you should participate in a short exercise. 
Take any coin and flip it 10 times. Now repeat this exercise of 10 coin flips 25 times. 
Record the number of heads you observe in each group of 10 flips. When you are
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FIGURE 2.6 Frequency distribution of the number of heads in 25 sets of 10 flips.

Z Scores

FIGURE 2.7 The theoretical distribution of the number of heads in an infinite 
number of coin flips.

done, make a frequency distribution showing how many times you observed 1 head 
in your 10 flips, 2 heads, 3 heads, and so on.

Your frequency distribution might look like the example shown in Figure 2.6. 
The most frequently observed events are approximately equal numbers of heads and 
tails. Toward the extremes of 10 heads and 0 tails or 10 tails and 0 heads, events 
are observed with decreasing frequency. For example, there were no occasions in 
which fewer than 2 heads were observed and only one occasion in which more than 
8 heads were observed. This is what we would expect from the laws of probability. 
On the average, we would expect half of the flips to show heads and half to show 
tails if heads and tails are equally probable events. Although observing a long string 
of heads or tails is possible, it is improbable. In other words, we sometimes see the 
coin come up heads in 9 out of 10 flips. The likelihood that this will happen, how­
ever, is quite small.

Figure 2.7 shows the theoretical distribution of heads in an infinite number of 
flips of the coin. This figure might look a little like the distribution from your coin­
flipping exercise or the distribution shown in Figure 2.6. Actually, this is a normal 
distribution, or what is known as a symmetrica/ binomial probability distribution.



CHAPTER 2 ■ Norms and Basic Statistics for Testing 47

On most occasions, we refer to units on the X (or horizontal) axis of the normal 
distribution in Z score units. Any variable transformed into Z score units takes on 
special properties. First, Z scores have a mean of 0 and a standard deviation of 1.0. 
If you think about this for a minute, you should be able to figure out why this is 
true. Recall that the sum of the deviations around the mean is always equal to 0. 
The numerator of the Z score equation is the deviation around the mean, while the 
denominator is a constant. Thus, the mean of Z scores can be expressed as

1,{X.-X)/S 2Z
------ ------------  or -----

N N

Because — X) will always equal 0, the mean of Z scores will always be 
0. In Figure 2.7, the standardized, or Z score, units are marked on the X axis. The 
numbers under the curve are the proportions of cases (in decimal form) that we 
would expect to observe in each area. Multiplying these proportions by 100 yields 
percentages. For example, we see that 34.13% or .3413 of the cases fall between 
the mean and one standard deviation above the mean. Do not forget that 50% of 
the cases fall below the mean. Putting these two bits of information together, we 
can conclude that if a score is one standard deviation above the mean, then it is at 
about the 84th percentile rank (50 + 34.13 = 84.13 to be exact). A score that is one 
standard deviation below the mean would be about the 16th percentile rank (50 — 
34.13 = 15.87). Thus, you can use what you have learned about means, standard 
deviations, Z scores, and the normal curve to transform raw scores, which have 
little meaning, into percentile scores, which are easier to interpret. These methods 
can be used only when the distribution of scores is normal or approximately normal. 
Methods for nonnormal distributions are discussed in most statistics books under 
“nonparametric statistics.”

Percentiles and Z Scores
These percentile ranks are the percentage of scores that fall below the observed 
Z score. For example, the Z score —1.6 is associated with the percentile rank of 5.48. 
The Z score 1.0 (third column) is associated with the percentile rank of 84.13.

Part I of Appendix 1 is a simplified version of Part II, which you need for more 
advanced use of Z scores. Part II gives the areas between the mean and various 
Z scores. Standard scored values are listed in the “Z” column. To find the proportion 
of the distribution between the mean of the distribution and a given Z score, you 
must locate the entry indicated by a specific Z score. Z scores are carried to a second 
decimal place in the columns that go across the table. First, consider the second 
column of the table because it is similar to Part I of Appendix 1. Take the Z score of 
1.0. The second column is labeled .00, which means that the second decimal place 
is also 0. The number listed in the table is .3413. Because this is a positive number, 
it is above the mean. Because the area below the mean is .5, the total area below a 
Z score of 1.0 is .5 + .3413 = .8413. To make this into a percentile (as shown in 
Part I of the appendix), multiply by 100 to get 84.13. Now try the example of a Z score 
of 1.64. To locate this value, find 1.6 in the first column. Then move your hand across 
the row until you get to the number below the heading .04. The number is .4495. 
Again, this is a positive Z score, so you must add the observed proportion to the .5
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that falls below the mean. The proportion below 1.64 is .9495. Stated another way, 
94.95% of the cases fall below a Z score of 1.64. Now try to find the percentile rank 
of cases that fall below a Z score of 1.10. If you are using the table correctly, you 
should obtain 86.43.

Now try —.75. Because this is a negative Z score, the percentage of cases falling 
below the mean should be less than 50. But there are no negative values in Part II of 
Appendix 1. For a negative Z score, there are several ways to obtain the appropriate 
area under the curve. The tables in Appendix 1 give the area from the mean to the 
Z score. For a Z score of —.75, the area between the mean and the Z score is .2734. 
You can find this by entering the table in the row labeled .7 and then moving across 
the row until you get to the figure in that row below the heading .05. There you 
should find the number .2734. We know that .5 of the cases fall below the mean. 
Thus, for a negative Z score, we can obtain the proportion of cases falling below the 
score by subtracting .2734, the tabled value listed in the appendix, from .5. In this 
case, the result is

.5 - .2734 = .2266

Because finding the percentile ranks associated with negative Z scores can be 
tricky, you might want to use Part I of Appendix 1 to see if you are in the right 
ballpark. This table gives both negative and positive Z scores but does not give the 
detail associated with the second decimal place. Look up —.7 in Part I. The per­
centile rank is 24.20. Now consider a Z score of —.8. That percentile rank is 21.19. 
Thus, you know that a Z score of —.75 should be associated with a percentile rank 
between 21.19 and 24.20. In fact, we have calculated that the actual percentile rank 
is 22.66.

Practice with Appendix 1 until you are confident you understand how it works. 
Do not hesitate to ask your professor or teaching assistant if you are confused. This is 
an important concept that you will need throughout the rest of the book. After you 
have mastered using the Tables in Appendix 1, you might try a nifty website (http:// 
davidmlane.com/hyperstat/z_table.html) that can find the probabilities for you.

Look at one more example from Table 2.2 (rainfall in San Diego, page 32). 
California had a dry year in 1999 and in 2007. In both years, the newscasters 
frequently commented that this was highly unusual. They described it as the “La 
Nina” effect, and some even claimed that it signaled global warming. The question 
is whether or not the amount of rainfall received in 1999 and 2007 was unusual 
given what we know about rainfall in general. To evaluate this, calculate the Z score 
for rainfall. According to Table 2.2, there were 6.51 inches of rainfall in 1999 and 
3.62 inches in 2007. The mean for rainfall is 10.33 inches and the standard deviation 
is 4.71. Thus, the Z score for 1999 is

6.51-10.33

Next determine where a Z score of—.81 falls within the Z distribution. According to 
Appendix 1, a Z score of —.81 is equal to the 20.9th percentile (50 — 29.1). Thus, the 
low rainfall year in 1999 was unusual—given all years, it was in about the 21st per­
centile. However, it was not that unusual. You can estimate that there would be less
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rainfall in approximately 17% of all years. 2007 was a different case. The Z score for 
2007 was —1.43. Rainfall in 2007 was in the 7.64th percentile. (Using Appendix 1, 
you can look up Z score of —1.43 and find an area below the mean of 0.4236. Then 
you can estimate the percentile as 50 — 42.36 = 7.64.)

You can also turn the process around. Instead of using Z scores to find the per­
centile ranks, you can use the percentile ranks to find the corresponding Z scores. 
To do this, look in Part II of Appendix 1 under percentiles and find the correspond­
ing Z score. For example, suppose you wish to find the Z score associated with the 
90th percentile. When you enter Part II of Appendix 1, look for the value closest 
to the 90th percentile. This can be a little tricky because of the way the table is 
structured. Because the 90th percentile is associated with a positive Z score, you are 
actually looking for the area above the 50th percentile. So you should look for the 
entry closest to .4000 (.5000 + .4000 = .9000). The closest value to .4000 is .3997, 
which is found in the row labeled 1.2 and the column labeled .08. This tells you that 
a person who obtains a Z score of 1.28 is at approximately the 90th percentile in the 
distribution.

Now return to the example of CES-D scores for medical students (Table 2.3). 
Monica had a Z score on the CES-D of —.44. Using Appendix 1, you can see that 
she was in the 33rd percentile (obtained as .50 — .1700 = .33 X 100 = 33). Marcel, 
with his Z score of .14, was in the 56th percentile; and Jennie, with a Z score of 1.70, 
was in the 96th percentile. You might have few worries about Monica and Marcel. 
However, it appears that Jennie is more depressed than 96% of her classmates and 
may need to talk to someone.

An Example Close to Home
One of the difficulties in grading students is that performance is usually rated in 
terms of raw scores, such as the number of items a person correctly answers on an 
examination. You are probably familiar with the experience of having a test re­
turned to you with some number that makes little sense to you. For instance, the 
professor comes into class and hands you your test with a 72 on it. You must then 
wait patiently while he or she draws the distribution on the board and tries to put 
your 72 into some category that you understand, such as B+.

An alternative way of doing things would be to give you a Z score as feedback 
on your performance. To do this, your professor would subtract the average score 
(mean) from your score and divide by the standard deviation. If your Z score was 
positive, you would immediately know that your score was above average; if it was 
negative, you would know your performance was below average.

Suppose your professor tells you in advance that you will be graded on a curve 
according to the following rigid criteria. If you are in the top 15% of the class, you 
will get an A (85th percentile or above); between the 60th and the 84th percentiles, 
a B; between the 20th and the 59th percentiles, a C; between the 6th and the 19th 
percentiles, a D; and in the 5th percentile or below, an F. Using Appendix 1, you 
should be able to find the Z scores associated with each of these cutoff points for 
normal distributions of scores. Try it on your own and then consult Table 2.4 to 
see if you are correct. Looking at Table 2.4, you should be able to determine what 
your grade would be in this class on the basis of your Z score. If your Z score is 1.04 
or greater, you would receive an A; if it were greater than .25 but less than 1.04,
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TABLE 2.4
Z Score Cutoffs for a Grading System

Grade Percentiles Z score cutoff

A 85-100 1.04
B 60-84 .25
C 20-59 -.84
D 6-19 -1.56
F 0-5 <-1.56

you would get a B; and so on. This system assumes that the scores are distributed 
normally.

Now try an example that puts a few of these concepts together. Suppose you get 
a 60 on a social psychology examination. You learned in class that the mean for the 
test was 55.70 and that the standard deviation was 6.08. If your professor uses the 
grading system that was just described, what would your grade be?

To solve this problem, first find your Z score. Recall the formula for a Z score;

So your Z score would be
^ 60-55.70

6.08
4.30
6.08

= .707

Looking at Table 2.4, you see that .707 is greater than .25 (the cutoff for a B) but 
less than 1.04 (the cutoff for an A). Now find your exact standing in the class. To 
do this, look again at Appendix 1. Because the table gives Z scores only to the sec­
ond decimal, round .707 to .71. You will find that 76.11% of the scores fall below a 
Z score of .71. This means that you would be in approximately the 76th percentile, 
or you would have performed better on this examination than approximately 76 out 
of every 100 students.

McCall's T
There are many other systems by which one can transform raw scores to give them 
more intuitive meaning. One system was established in 1939 by W. A. McCall, who 
originally intended to develop a system to derive equal units on mental quantities. 
He suggested that a random sample of 12-year-olds be tested and that the distribu­
tion of their scores be obtained. Then percentile equivalents were to be assigned to 
each raw score, showing the percentile rank in the group for the people who had ob­
tained that raw score. After this had been accomplished, the mean of the distribu­
tion would be set at 50 to correspond with the 50th percentile. In McCall’s system, 
called McCall’s T, the standard deviation was set at 10.

In effect, McCall generated a system that is exactly the same as standard scores 
(Z scores), except that the mean in McCall’s system is 50 rather than 0 and the
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standard deviation is 10 rather than 1. Indeed, a Z score can be transformed to a 
T score by applying the linear transformation

T= 10Z + 50

You can thus get from a Z score to McCall’s Thy multiplying the Z score by 10 and 
adding 50. It should be noted that McCall did not originally intend to create an 
alternative to the Z score. He wanted to obtain one set of scores that could then be 
applied to other situations without standardizing the entire set of numbers.

There is nothing magical about the mean of 50 and the standard deviation of 
10. It is a simple matter to create systems such as standard scores with any mean 
and standard deviation you like. If you want to say that you got a score 1000 points 
higher than a person who was one standard deviation below you, then you could 
devise a system with a mean of 100,000 and a standard deviation of 1000. If you 
had calculated Z scores for this distribution, then you would obtain this with the 
transformation

NS (for new score) = lOOOZ + 100,000

In fact, you can create any system you desire. To do so, just multiply the Z score by 
whatever you would like the standard deviation of your distribution to be and then 
add the number you would like the mean of your new distribution to be.

An example of a test developed using standardized scores is the SAT Reason­
ing Test. When this test was created in 1941, the developers decided to make the 
mean score 500 and the standard deviation 100. Thus, they multiplied the Z scores 
for those who took the test by 100 and added 500. For a long time, the basic scoring 
system was used and the 1941 norms were applied. In other words, if the average 
score of test takers was below the 1941 reference point, the mean for any year could 
be less than or more than 500. However, in 1995, the test was changed so that the 
mean each year would be 500 and the standard deviation would be 100. In other 
words, the test is recalibrated each year. However, drifts continue. For example, in 
2007 the average scores on the SAT were 494 for writing, 502 for critical reading 
and 515 for math (data from www.collegeboard.com).

It is important to make the distinction between standardization and normal­
ization. McCall’s T and the other methods described in this section standardize 
scores by applying a linear transformation. These transformations do not change the 
characteristics of the distributions. If a distribution of scores is skewed before the 
transformation is applied, it will also be skewed after the transformation has been 
used. In other words, transformations standardize but do not normalize.

Quartiles and Deciles
The terms quartiles and deciles are frequently used when tests and test results are 
discussed. The two terms refer to divisions of the percentile scale into groups. The 
quartile system divides the percentage scale into four groups, whereas the decile 
system divides the scale into 10 groups.

Quartiles are points that divide the frequency distribution into equal fourths. 
The first quartile is the 25th percentile; the second quartile is the median, or 50th, 
percentile; and the third quartile is the 75th percentile. These are abbreviated Ql, 
Q2, and Q3, respectively. One fourth of the cases will fall below Ql, one half will

http://www.collegeboard.com
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TABLE 2.5
Transformation of Percentile Scores into Stanines

Percentage of cases Percentiles Stanines

4 1-4 1 Bottom 4 percent
7 5-11 2

12 12-23 3
17 24-40 4
20 41-60 5
17 61-77 6
12 78-89 7
7 90-96 8
4 97-100 9 Top 4 percent

fall below Q2, and three fourths will fall below Q3. The interquartile range is the 
interval of scores bounded by the 25th and 75th percentiles. In other words, the 
interquartile range is bounded by the range of scores that represents the middle 
50% of the distribution.

Deciles are similar to quartiles except that they use points that mark 10% rather 
than 25% intervals. Thus, the top decile, or D9, is the point below which 90% of the 
cases fall. The next decile (D8) marks the 80th percentile, and so forth.

Another system developed in the U. S. Air Force during World War II is known 
as the stanine system. This system converts any set of scores into a transformed scale, 
which ranges from 1 to 9. Actually the term stanine comes from “standard nine.” The 
scale is standardized to have a mean of 5 and a standard deviation of approximately 
2. It has been suggested that stanines had computational advantages because they 
required only one column on a computer card (Anastasi 8c Urbina, 1997). Because 
computer cards are no longer used, this advantage is now questionable.

Table 2.5 shows how percentile scores are converted into stanines. As you can 
see, for every 100 scores, the lowest 4 (or bottom 4% of the cases) fall into the first 
stanine. The next 7 (or 7% of the cases) fall into the second stanine, and so on. Finally, 
the top 4 cases fall into the top stanine. Using what you have learned about Z scores 
and the standard normal distribution, you should be able to figure out the stanine 
for a score if you know the mean and the standard deviation of the distribution that 
the score comes from. For example, suppose that Igor received a 48 on his normally 
distributed chemistry midterm. The mean in Igor’s class was 42.6, and the standard 
deviation was 3.6. First you must find Igor’s Z score. Do this by using the formula

-A

S
48-42.6 , ,so Z=------------ = 1.5

3.6

Now you need to transform Igor’s Z score into his percentile rank. To do this, use 
Appendix 1. Part I shows that a Z score of 1.5 is in approximately the 93rd percen­
tile. Thus, it falls into the 8th stanine.
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Actually, you would rarely go through all these steps to find a stanine. There 
are easier ways of doing this, including computer programs that do it automatically. 
However, working out stanines the long way will help you become familiar with a 
variety of concepts covered in this chapter, including standard scores, means, stan­
dard deviations, and percentiles. First, review the five steps to go from raw scores 
to stanines:

1. Find the mean of the raw scores.
2. Find the standard deviation of the raw scores.
3. Change the raw scores to Z scores.
4. Change the Z scores to percentiles (using Appendix 1).
5. Use Table 2.5 to convert percentiles into stanines.

An alternative method is to calculate the percentile rank for each score and use 
Table 2.5 to obtain the stanines. Remember: In practice, you would probably use a 
computer program to obtain the stanines. Although stanines are not used much in 
the modern computer era, you can still find them in popular educational tests such 
as the Stanford Achievement Test.

NORMS
Norms refer to the performances by defined groups on particular tests. There are 
many ways to express norms, and we have discussed some of these under the head­
ings of Z scores, percentiles, and means. The norms for a test are based on the dis­
tribution of scores obtained by some defined sample of individuals. The mean is a 
norm, and the 50th percentile is a norm. Norms are used to give information about 
performance relative to what has been observed in a standardization sample.

Much has been written about norms and their inadequacies. In later chapters, 
we shall discuss this material in relation to particular tests. We cover only the high­
lights here. Whenever you see a norm for a test, you should ask how it was estab­
lished. Norms are obtained by administering the test to a sample of people and ob­
taining the distribution of scores for that group.

For example, say you develop a measure of anxiety associated with taking tests 
in college. After establishing some psychometric properties for the test, you admin­
ister the test to normative groups of college students. The scores of these groups 
of students might then serve as the norms. Say that, for the normative groups of 
students, the average score is 19. When your friend Alice comes to take the test and 
obtains a score of 24, the psychologist using the test might conclude that Alice is 
above average in test anxiety.

The SAT, as indicated earlier, has norms. The test was administered to millions 
of high-school seniors from all over the United States. With distributions of scores 
for this normative group, one could obtain a distribution to provide meaning for 
particular categories of scores. For example, in the 1941 national sample, a person 
who scored 650 on the verbal portion of the SAT was at the 93rd percentile of high- 
school seniors. However, if you took the test before 1995 and scored 650, it did not 
mean that you were in the 93rd percentile of the people who took the test when you 
did. Rather, it meant that you would have been at the 93rd percentile if you had 
been in the group the test had been standardized on. However, if the normative
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Percentage of 
cases in 8 portions 

of the curve 
Standard Deviations 

Cumulative 
Percentages 
Percentiles 

Z scores 
T scores 

IQ scores 
Stanines

0.1% 2.3% 15.9% 50% 84.1% 971% 999%
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FIGURE 2t8 Standard normal distribution with cumulative percentages, 
percentiles, Z scores, Tscores, IQ scores, and stanines.

group was a representative sample of the group to which you belonged (and there is 
every reason to believe it was), then you could reasonably assume that you were in 
approximately the 93rd percentile of your own group.^ After 1995, an SAT score of 
650 would place you in the 93rd percentile of the people who took the test during 
the year you completed it. Some controversies surrounding norms are discussed in 
Psychological Testing in Everyday Life 2.4.

In Chapters 9 and 10 we will review intelligence tests. Most intelligence tests 
are transformed to have a mean of 100 and a standard deviation of 15. Thus, an IQ_ 
score of 115 is one standard deviation above the mean and an IQscore of 130 is two 
standard deviations above the mean. Using the information we have reviewed, you 
can determine that an IQ_score of 115 is approximately in the 84th percentile, while 
an IQ_score of 85 is approximately in the 16th percentile. Only some 0.13% of the 
population obtains an IQ_score of 145, which is three standard deviations above 
the mean. Figure 2.8 shows the standard normal distribution with the Z scores, 
Tscores, IQ_scores, and stanines. Examining the figure, locate the point that is one 
standard deviation above the mean. That point is associated with a Z score of 1.0, 
a T score of 60, an IQ_score of 115, and the seventh stanine. Using the figure, try 
to find the score on each scale for an observation that falls two standard deviations 
below the mean. You should get a Z score of —2.0, a T score of 30, an IQ_score of 
70, and a stanine of 1.

Age-Related Norms
Certain tests have different normative groups for particular age groups. Most IQ_ 
tests are of this sort. When the Stanford-Binet IQjtest was originally created, distri­
butions of the performance of random samples of children were obtained for various

^Based on the American Testing Program Guide for 1989-1991, College Board of the Educational 
Testing Service, Princeton, New Jersey.
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age groups. When applying an IQ_test, the tester’s task is to determine the mental 
age of the person being tested. This is accomplished through various exercises that 
help locate the age-level norm at which a child is performing.

Tracking
One of the most common uses of age-related norms is for growth charts used by pe­
diatricians. Consider the question “Is my son tall or short?” The answer will usually 
depend on a comparison of your son to other boys of the same age. Your son would 
be quite tall if he were 5 feet at age 8 but quite short if he were only 5 feet at age 18. 
Thus, the comparison is usually with people of the same age.

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE 2.4 
Within-GroupNorming Controversy

One of the most troubling issues in psychological testing is that different racial 
and ethnic groups do not have the same average level of performance on many 
tests (see Chapter 19). When tests are used to select employees, a higher per­
centage of majority applicants are typically selected than their representation in 
the general population would indicate. For example, employers who use general 
aptitude tests consistently overselect white applicants and underselect African 
Americans and Latinos or Latinas. Overselection is defined as selecting a higher 
percentage from a particular group than would be expected on the basis of the 
representation of that group in the applicant pool. If 60% of the applicants are 
white and 75% of those hired are white, then overselection has occurred.

The U.S. Department of Labor uses the General Aptitude Test Battery 
(GATE) to refer job applicants to employers. At one point, however, studies 
demonstrated that the GATB adversely affected the hiring of African Ameri­
cans and Latinos and Latinas. To remedy this problem, a few years ago the de­
partment created separate norms for different groups. In other words, to obtain 
a standardized score, each applicant was compared only with members of his 
or her own racial or ethnic group. As a result, overselection based on test scores 
was eliminated. However, this provoked other problems. For example, consider 
two applicants, one white and one African American, who are in the 70th per­
centile on the GATB. Although they have the same score, they are compared 
with different normative groups. The raw score for the white applicant would 
be 327, while that for the African American would be 283 (Brown, 1994). This 
was seen as a problem because an African American applicant might be selected 
for a job even though she had a lower raw score, or got fewer items correct, than 
did a white applicant.

The problem of within-group norming is highlighted by opposing opinions 
from different prestigious groups. The National Academy of Sciences, the most 
elite group of scholars in the United States, reviewed the issue and concluded 
that separate norms were appropriate. Specifically, they argued that minority 
workers at a given level of expected job performance are less likely to be hired

(continues)
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PSYCHOLOGICAL TESTING IN EVERYDAY LIFE 2.4 (continued)

than are majority group members. The use of separate norms was therefore re­
quired in order to avoid adverse impact in hiring decisions (Gottfredson, 1994; 
Hartigan & Wigdor, 1989).

In contrast to this conclusion, legislation has led to different policies. Sec­
tion 106 of the Civil Rights Act of 1991 made it illegal to use separate norms. 
The act states that it is unlawful for employers

in connection with the selection or referral of applicants or candidates for employ­

ment or promotion to adjust the scores of, use different cut-offs for, or otherwise 

alter the results of employment-related tests on the basis of race, color, religion, 

sex, or national origin.

Employers may have a variety of different objectives when making employ­
ment decisions. One goal may be to enhance the ethnic and racial diversity of 
their workforce. Another goal may be to hire those with the best individual 
profiles. Often these goals compete. The law may now prohibit employers from 
attempting to balance these competing objectives (Sackett ScWilk, 1994).

Beyond this rather obvious type of age-related comparison, child experts have 
discovered that children at the same age level tend to go through different growth 
patterns. Children who are small as infants often remain small and continue to 
grow at a slower pace than do others. Pediatricians must therefore know more than 
a child’s age; they must also know the child’s percentile within a given age group. 
For a variety of physical characteristics, children tend to stay at about their same 
percentile level, relative to other children in their age group, as they grow older. This 
tendency to stay at about the same level relative to one’s peers is known as track­
ing. Height and weight are good examples of physical characteristics that track. 
Figures 2.9 and 2.10 show the expected rates of growth in terms of length (height) 
for boys and girls. The charts are based on national norms from the U.S. Centers 
for Disease Control and Prevention (CDC). Notice that the children who were the 
largest as babies are expected to remain the largest as they get older.

Pediatricians use the charts to determine the expected course of growth for a 
child. For example, if a 3-month-old boy was 24 inches in length (about 61 cm), the 
doctor would locate the child on the center line on the bottom half of Figure 2.9. 
By age 36 months, the child would be expected to be about 37.5 inches (or about 
95 cm). The tracking charts are quite useful to doctors because they help determine 
whether the child is going through an unusual growth pattern. A boy who had a 
length of 24 inches at age 3 months might come under scrutiny if at age 36 months 
he had a length of 35 inches. He would have gone from the 50th percentile to about 
the 3rd percentile in relation to other boys. This might be normal for 3-year-olds if 
the boy had always been in the 3rd percentile, but unusual for a boy who had been 
in the middle of the length distribution. The doctor might want to determine why 
the child did not stay in his track.
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FIGURE 2.9 Track­
ing chart for boys' 
physical growth from 
birth to 36 months.

Developed by the National 
Center for Health Statistics 
in collaboration with the 
National Center for Chronic 
Disease Prevention and 
Health Promotion (2000).

CDC Growth Charts: United States

Age (months)
Published May 30,2000.
SOURCE: Developed by the National Center tor Health Statistics in collaboration with

the National Center for Chronic Disease Prevention and Health Promotion (2000).
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Figure 2.11 shows an example of a child going off track. There is some con­
cern that children who are fed a fat-restricted diet experience stunted growth 
(Kaplan 8c Toshima, 1992). The consequences of a slightly restricted vegetarian 
diet are mild if they exist at all. However, highly restricted diets may affect growth. 
For instance, Pugliese, Lifshitz, Grad, Fort, and Marks-Katz (1983) studied



58 CHAPTER 2 ■ Norms and Basic Statistics for Testing

FIGURE 2.10 
Tracking chart for girls' 
physical growth from 
birth to 36 months.

Developed by the National 
Center for Health Statistics 
in collaboration with the 
National Center for Chronic 
Disease Prevention and 
Health Promotion (2000).

CDC Growth Charts: United States

Age (months)
Published May 30.2000.
SOURCE: Developed by the National Center for Health Statistics In collaboration with

the National Center for Chronic Disease Prevention and Health Promotion (2000).

CDC

24 adolescents who had voluntarily undergone severe caloric restrictions because 
they wanted to lose weight. Though they did not have anorexia nervosa, they con­
sumed only a small percentage of the calories recommended for their age. Figure 
2.11 shows the growth pattern for one of these children. As the figure suggests, 
the child grew normally until age 9. At that point, highly restricted dieting began.
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Age (yr)

FIGURE 2.11 Growth in the case of severe dietary restriction. The scales 
represent percentile standards for height and weight, and the plotted values 
are for the clinical case.

(From Pugliese et al., 1983, p. 514; reprinted by permission of The New EngfandJournal of Medicine. 309, 
513-518,1983.)

Within a few years, growth was interrupted. The arrow in the figure shows the 
point at which psychotherapy began. After this point, normal feeding resumed, and 
growth started once again. However, at age 18, the child was still below the 5th 
percentile in height and weight. Given normal tracking, this child should have been 
between the 25th and 50th percentiles.

Although the tracking system has worked well for medicine, it has stirred con­
siderable controversy in education. Some people believe there is an analogy between 
the rates of physical growth and the rates of intellectual growth: Just as there are 
some slow growers who eventually will be shorter than average adults, there are 
slow learners who will eventually know less as adults. Furthermore, some suggest 
that children learn at different rates. Children are therefore separated early in their 
educational careers and placed in classrooms that correspond with these different 
tracks. Many educators have attacked the tracking system because it discriminates 
against some children. Because people use psychological tests to place children in 
these tracks, some tests have come under severe scrutiny and attack. We shall return 
to this controversy in Chapters 19 and 20.
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Criterion-Referenced Tests
The purpose of establishing norms for a test is to determine how a test taker com­
pares with others. A norm-referenced test compares each person with a norm. 
Many critics have objected that this use of tests forces competition among people. 
Young children exposed to many norm-referenced tests in elementary school can 
get caught up in a never-ending battle to perform better than average. In addition to 
ranking people according to performance, however, tests can play an important role 
in identifying problems and suggesting new directions for individualized programs 
of instruction. During the last two decades, interest has grown in tests that are ap­
plied to determine whether students know specific information. These tests do not 
compare students with one another; they compare each student’s performance with 
a criterion or an expected level of performance (Hartman 6c Looney, 2003; Wiberg, 
2003).

A criterion-referenced test describes the specific types of skills, tasks, or 
knowledge that the test taker can demonstrate such as mathematical skills. The re­
sults of such a test might demonstrate that a particular child can add, subtract, and 
multiply but has difficulty with both long and short division. The results of the test 
would not be used to make comparisons between the child and other members of his

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE 2.5 

Within High-School Norms for University Admission
Beginning in 2002, the University of California changed its admissions policy. 
The university had discovered that its admissions did not reflect the demo­
graphic characteristics of the state. In particular, students from underrepre­
sented groups and those from low-income neighborhoods were not gaining 
admission to the university. When the university was required to give up its 
affirmative action program, there were serious concerns that the student classes 
would not reflect the diversity of the state of California.

To address this problem, the university created the Eligibility in Local 
Context (ELC) program. This program guarantees eligibility for university ad­
mission to the top 4% of graduates of California high schools. The plan focuses 
only on high-school grades and does not require the SAT test.

The purpose of this policy is to provide norming within particular high 
schools. In other words, students are not competing with all other students in 
the state but are being compared only with those who have had similar educa­
tional exposures. The policy was designed to increase the number of students 
from underrepresented ethnic and minority groups who were admitted to the 
university. Unfortunately, the program was not successful. Latino acceptance 
rates dropped from 68% in 1995 to 45% in 2003. African American acceptance 
rates were 58% in 1995 and dropped to 35% by 2003. As a result, the program 
was abandoned.

Details can be obtained from www.ucop.edu/sas/elc.

http://www.ucop.edu/sas/elc


CHAPTER 2 ■ Norms and Basic Statistics for Testing 61

or her class. Instead, they would he employed to design an individualized program 
of instruction that focuses on division. Thus, the criterion-referenced testing move­
ment emphasizes the diagnostic use of tests—that is, using them to identify prob­
lems that can be remedied. Criterion-referenced tests became an important trend in 
clinical psychology in the 1980s and 1990s. In educational testing, the same ideas 
formed the basis of the standards-based testing movement. Instead of comparing 
how well children were performing in relation to other children, schools were evalu­
ated on the basis of how many students exceeded a criterion score. Under the No 
Child Left Behind legislation, schools could lose funding if the number of students 
failing to meet the criterion was too high. Thus, the criterion-referenced testing 
movement, originally thought to be a humanistic trend, became associated with 
a more conservative approach to public education. Advocates for standards-based 
testing emphasize that schools must enforce high standards. Critics of the standards 
movement argue that the cut points for passing high stakes tests are often arbitrary 
(see Psychological Testing in Everyday Life 2.6).

PSYCHOLOGICAL TESTING IN EVERYDAY LIFE 2.6 
No Child Left Behind

Several contemporary issues in testing are relevant to the No Child Left 
Behind (NCLB) Act. NCLB was initiated by President George W. Bush with 
the justification that every child should receive a quality education and that 
“no child is left behind.” In 2002, Congress passed the legislation with sig­
nificant support from both Democrats and Republicans. The key provisions of 
the bill require greater accountability for school performance. In particular, 
performance information about school districts was made public. Schools were 
required to show how well they were doing by reporting the proportions of stu­
dents who passed standardized tests. The law required that states test each child 
for proficiency in reading and math in Grades 3 through 8. Further, each child 
is tested at least once during the high school years.

On the surface, it seemed like there was little to dislike about NCLB. 
However, by the time the legislation was considered for reauthorization in 
2007, numerous concerns had emerged. In particular, critics were very con­
cerned about the application of testing and the effects the test results might 
have on school funding. NCLB uses standardized achievement tests to evaluate 
school performance. The tests are “standards-based.” This means that children 
must demonstrate specific critical knowledge in order to pass the test, and 
passing is defined by an arbitrary cut point. Those above the cut point pass the 
exam, and those below the cut point fail. Because tests became such an impor­
tant component of school evaluation, many critics believed that teachers and 
schools were simply “teaching to the test.” In other words, schools and teach­
ers focused on subjects that were covered on the test, like reading and math, 
while disregarding many other important topics, including the arts and some 
humanities.
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PSYCHOLOGICAL TESTING IN EVERYDAY LIFE 2.7 
Are 4th Graders Smarter than 3rd Graders?

One of the most important instruments for measuring school performance is 
the standardized achievement test. California uses a standardized testing and 
reporting (STAR) system. STAR is very important because it evaluates perfor­
mance for high stakes programs such as No Child Left Behind. In an average 
year, nearly 5 million children are tested in the STAR program. The evalua­
tion of information from the STAR program reveals some interesting trends. 
The test reveals several indicators of school performance, and these measures 
are taken quite seriously. Figure 2.12 summarizes the percentage of students 
who perform at an advanced level in different grades. The data are from three 
separate years: 2005, 2006, and 2007. The graph shows that each year, relatively 
few 3rd graders perform at the advanced level while many 4th graders perform 
at the advanced level. Does this mean that 4th grade students are smarter than 
3rd grade students? Norm-referenced test results would never lead to this con­
clusion because students at each level are compared relative to other students in 
their same grade level. Standards-based testing does not attend to how students 
are performing in relation to other students. Instead, the tests consider perfor­
mance relative to a defined standard. One explanation for the data shown in the 
graph is that there was an exceptional crop of good students in a particular 4th 
grade. However, this explanation seems unlikely because the effect occurs each 
year. A more plausible explanation is that the definition of performing at an 
advanced level is somewhat arbitrary. The test may be too hard for 3rd graders 
but perhaps too easy for 4th graders.

FIGURE 2.12 STAR test performance by grade in three years.
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SUMMARY
In this chapter, we discussed some basic rules for translating observations of human 
activities into numbers. The use of number systems is important for precision in all 
scientific exercises. Measures of psychological processes are represented by one of 
four types of scales. A nominal scale simply assigns numbers to categories. This type 
of scale has none of the properties of a numbered scale. An ordinal scale has the prop­
erty of magnitude and allows us to rank objects, but it does not have the property of 
equal intervals or an absolute 0. An interval scale can describe the distances between 
objects because it has the property of equal intervals in addition to the property of 
magnitude. A ratio scale has an absolute 0 in addition to equal intervals and magni­
tude. Any mathematical operation on a ratio scale is permissible.

To make sense out of test scores, we have to examine the score of an individual 
relative to the scores of others. To do this requires creating a distribution of test 
scores. There are several ways to display the distribution of scores, including fre­
quency distributions and frequency polygons. We also need statistics to describe 
the distribution. The mean is the average score, the variance is the averaged squared 
deviation around the mean, and the standard deviation is the square root of the vari­
ance. Using these statistics, we can tell a lot about a particular score by relating it 
to characteristics of a well-known probability distribution known as the standard 
normal distribution.

Norms are used to relate a score to a particular distribution for a subgroup of 
a population. For example, norms are used to describe where a child is on some 
measure relative to other children of the same age. In contrast, criterion-referenced 
tests are used to document specific skills rather than to compare people. Criterion- 
referenced tests are the basis for standards-based assessment in public education. 
Standards-based assessment requires that students pass tests demonstrating that 
they have critical knowledge and skills in defined areas. Some critics believe the cut 
points for passing the tests are arbitrary.

In summary, this chapter reviewed basic statistical methods for describing 
scores on one variable. In Chapter 3, we shall discuss statistical methods for show­
ing the relationship between two or more variables.


