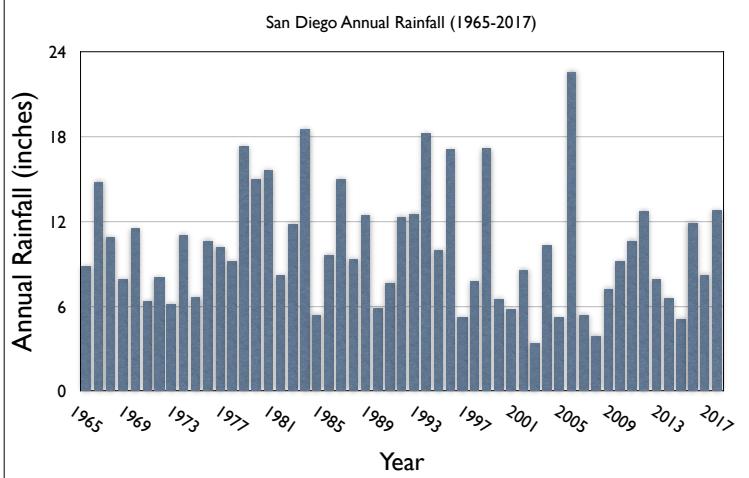


# Ch. 2 - Measurement & Stats

$$S = \sqrt{\frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N - 1}}$$

## Measurement & Stats

- Why numbers?
- Distribution & Graphs : Histogram
- Central Tendency
- Mean, SoR, SSR, Variance, Standard Deviation
- In-class exercise
- Population vs. Sample
- Measurement Scales
- Precision vs. Accuracy
- Logic and Logical Fallacies Descriptive vs. Inferential Statistics
- Norms


## Basic Statistics

- Why use numbers?
  - Pros:
    - convenient, succinct
    - universal
    - well-defined, repeatable
  - Cons:
    - precision vs. accuracy
    - numerical fallacy

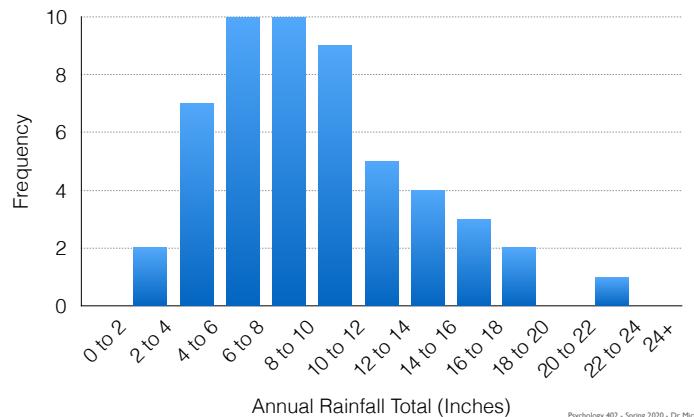
## Tabular Data

| Year | Rainfall (inches) |
|------|-------------------|
| 1965 | 8.81              |
| 1966 | 14.76             |
| 1967 | 10.86             |
| 1968 | 7.86              |
| 1969 | 11.48             |

## Data Distributions



# Histogram


- Frequency Distribution
- Invented by Karl Pearson
- Shows data from *one* variable only
- Data is (often) collected into groups (“bins”)

280

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# Histogram

Frequency Distribution of San Diego Annual Rainfall 1965-2017



283

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Describing Distributions

- Why? Large lists are inconvenient. Reduce many data points to a few numbers.
- Issue: Reducing data (“Degrees of freedom”) : throws away data.
- We are modeling our data using a simplification.
- “All models are wrong, some models are useful”
- Simple vs. Simplistic?

288

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Descriptive Statistics

- Statistical Assumptions: When these are not met, weird things happen.
- Joe Smith is 6 feet tall, his child is 1 foot tall. Thus, the average height in the Smith household is 3.5 feet.
- If you are sitting in bar, and Bill Gates walks in, suddenly everyone in the bar is (on average) a multi-millionaire.

289

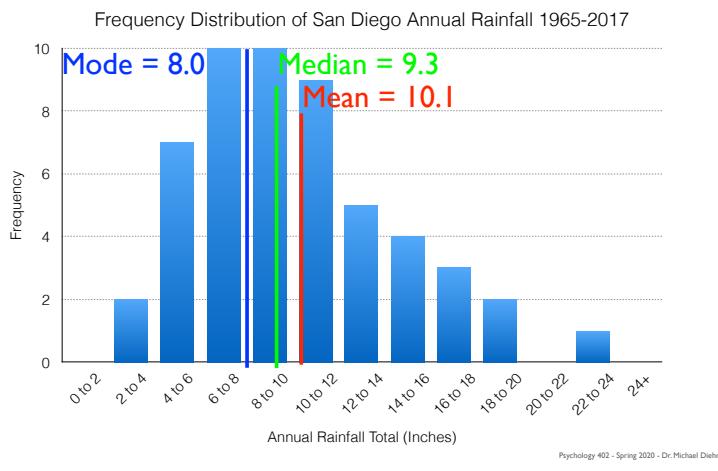
Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Alternative Notation

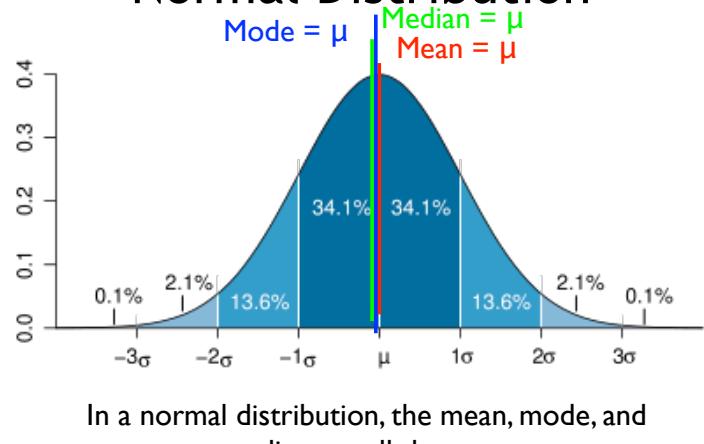
- Square Root (x)  $\sqrt{x}$   $\sqrt[2]{x}$
- X-Squared  $X^2$   $X^{**2}$   $X^2$
- Sum(x)  $x_1+x_2+x_3\dots$   $\sum_{i=1}^N x_i$   $\sum x$
- Mean  $M$   $\frac{\sum x}{N}$   $\bar{X}$

290

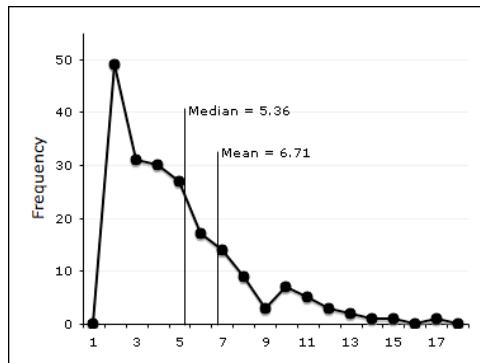
Psychology 402 - Spring 2020 - Dr. Michael Diehr


## Central Tendencies

- Values tend to cluster around a point.
- **Mean** : most common statistic, commonly referred to as the “average”. Formula  $\Sigma X / N$
- **Mode**: the most common value in a set
  - rare to use in statistics
- **Median**: the middle-most value in a set
  - the value at which half are above and half are below. Aka the 50th percentile.


291

Psychology 402 - Spring 2020 - Dr. Michael Diehr


# Histogram



# Normal Distribution



# Skewed Distribution



# Skew

- negative skew : fatter tail on the left
- positive skew : fatter tail on the right



# Measures of Central Tendency 1

|               | Description             | Algorithm                      | Formula                                |
|---------------|-------------------------|--------------------------------|----------------------------------------|
| <b>Mean</b>   | the “average”           | sum values, divide by N        | $\bar{x} = \frac{\sum_{i=1}^N x_i}{N}$ |
| <b>Median</b> | the “middle-most” value | sort values, find middle value | 50th percentile                        |
| <b>Mode</b>   | the “most common” value | find most frequent value       | ...                                    |

# Measures of Central Tendency 2

| Behavior:     | Normal Distribution | Skewed Distribution          |
|---------------|---------------------|------------------------------|
| <b>Mean</b>   | same                | overly affected by outliers  |
| <b>Median</b> | same                | fairly resistant to outliers |
| <b>Mode</b>   | same                | resistant to outliers        |

# Measures of Dispersion 1

- Compare each measured value to the average
- “for a typical value, how far away is it from the mean”
- “Difference score” or “residual” can be calculated as the difference between the actual score and the mean. In other words,  $d_i = x_i - \bar{X}$
- Take the average (mean) of the difference scores.
- Average difference score =  $\text{Sum}(d) / N$

300

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# Average Difference Score

|             | Score (x) | Mean ( $\bar{X}$ ) | Difference $d = (x - \bar{X})$ |
|-------------|-----------|--------------------|--------------------------------|
|             | 2         | 6                  | -4                             |
|             | 3         | 6                  | -3                             |
|             | 9         | 6                  | 3                              |
|             | 11        | 6                  | 5                              |
|             | 14        | 6                  | 8                              |
|             | 1         | 6                  | -5                             |
|             | 6         | 6                  | 0                              |
|             | 4         | 6                  | -2                             |
|             | 5         | 6                  | -1                             |
|             | 5         | 6                  | -1                             |
| <b>Sum</b>  | <b>60</b> | <b>60</b>          | <b>0</b>                       |
| <b>Mean</b> | <b>6</b>  | <b>6</b>           | <b>0</b>                       |

301

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# Sum of Residuals

- Given N samples of x :  $x_1, x_2, x_3 \dots x_N$
- mean of x  $\bar{x} = \frac{\sum_{i=1}^N x_i}{N}$
- residuals  $d_i = x_i - \bar{x}$
- Sum of Residuals is always zero

$$\sum_{i=1}^N d_i = 0$$

302

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# Sum of Residuals

- The “average difference score” score will *always* equal zero
- Solution:
  - Square the residuals *before* adding: removes the negative values.
  - “SSR” or Sum of Squared Residuals

303

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# SSR: Sum of Squared Residuals

- Given N samples of X:  $x_1, x_2, x_3 \dots x_N$
- mean of x  $\bar{x} = \frac{\sum_{i=1}^N x_i}{N}$
- residuals  $d_i = x_i - \bar{x}$
- Sum of Squared Residuals (SSR)

$$SSR = \sum_{i=1}^N (d_i)^2$$

304

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# Problems with SSR

- SSR depends on units used (e.g. meters vs. millimeters)
- SSR depends on N (# of samples)
- Therefore, it's hard to interpret
  - is SSR = 0.00342 high or low?
  - is SSR = 2343249 high or low?

305

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Remove the influence of N

- The Sum of a set of values depends on the number (N) of values:
- $\sum_{i=1}^N x_i$
- Take the average (mean) : divide by N, which removes the influence of N.

306

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Variance

- Problem: SSR depends on N
- Solution: Take the average of SSR to remove the influence of N
- The average of the squared residuals is called Variance ( $S^2$ )

307

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Variance

- Variance = SSR/N
- Variance = mean of squared residuals

$$S^2 = \frac{\sum_{i=1}^N (d_i)^2}{N}$$

$$S^2 = \frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N}$$

308

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Problems with Variance

- Units are squared:
  - measuring height in meters? variance is meters<sup>2</sup>
  - measuring # of cupcakes eaten? variance is (# of cupcakes eaten)<sup>2</sup>
- Won't someone rid me of these meddlesome squared units?

309

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Standard Deviation

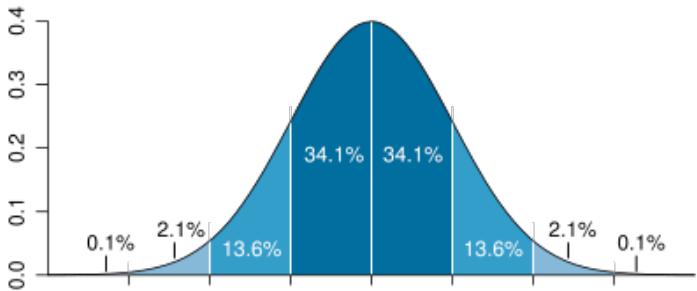
- Improving on Variance:
- The square root of Variance ( $S^2$ ) gives S, which is called "Standard Deviation".
- Also abbreviated SD, StdDev or  $\sigma$  (Greek letter sigma)
- SD : easier to understand because it's in the same units as your measurement.
- SD is a unique property of the normal distribution -- given a mean and a SD you have uniquely specified the distribution

310

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Standard Deviation

- SD = Square root of Variance

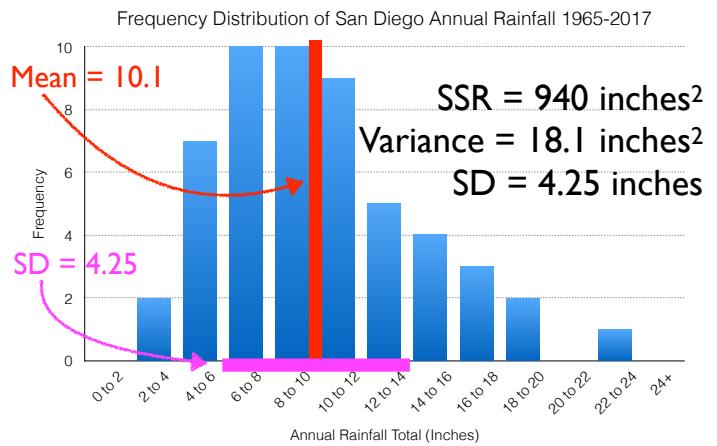

$$S = \sqrt{\frac{\sum_{i=1}^N (d_i)^2}{N}}$$

$$S = \sqrt{\frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N}}$$

311

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# Normal Distribution




In a normal distribution, about 68.2% of values fall within  $\pm 1$  SD

312

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# SSR, Variance and SD



314

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# Central Limit Theorem

- No matter the shape of the Population distribution, if you take enough (\*) samples of the mean, the distribution of your samples of the mean will have a Normal distribution
- Central Limit Theorem Exercise (Javascript)
- This fact makes our life easy: Many statistics assume a normal distribution. The CLT provides us a normal distribution in most cases, even when the population data is skewed

317

Psychology 402 - Spring 2020 - Dr. Michael Diehr

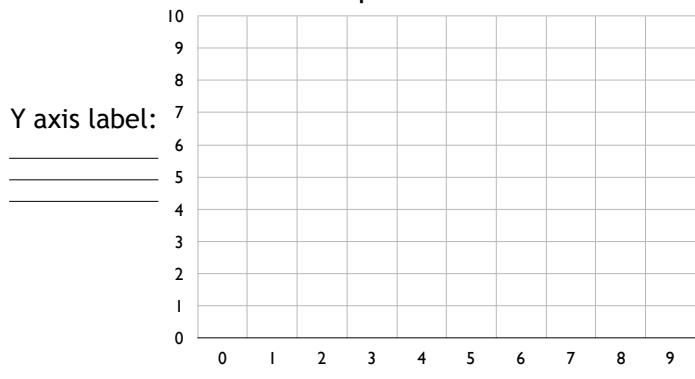
# Exercise: normal distribution

- Roll one 10-sided die 10 times and record the results
- Prediction
  - Your Distribution: Uniform (flat)
  - Mean : 4.5
  - Class Distribution: ???
- hint: What is N? # die rolls, # of students?
- List and Graph results
- Does the distribution look normal?
  - if so, why?

319

Psychology 402 - Spring 2020 - Dr. Michael Diehr

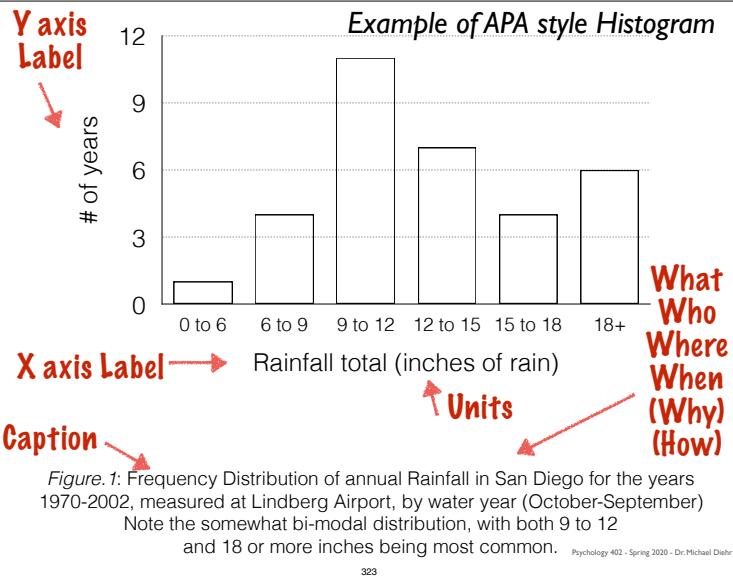
## Exercise 1: Die Rolls


| X | M | $d = (x_i - M)$ | $(\text{residual})^2$ |
|---|---|-----------------|-----------------------|
| 2 | 3 | -1              | 1                     |
| 3 | 3 |                 |                       |
| 5 | 3 |                 |                       |
| 2 | 3 |                 |                       |

| N | $M = \bar{X}$ | $\Sigma \text{Residuals}$ | $\Sigma (\text{residual}^2)$ | $\frac{\Sigma (\text{residual}^2)}{N-1}$ | $\sqrt{S^2}$ |
|---|---------------|---------------------------|------------------------------|------------------------------------------|--------------|
|   | 3             |                           |                              |                                          |              |

320

Psychology 402 - Spring 2020 - Dr. Michael Diehr


## Graph:



Caption: \_\_\_\_\_

322

Psychology 402 - Spring 2020 - Dr. Michael Diehr



## Exercise: normal distribution 2

- Compute Mean ( $\bar{X}$ ) - is it near 4.5?
- Compute residuals
- Compute sum of residuals -- do they add to zero?
- Compute squared residuals
- Compute Sum of squared residuals (SSR)
- Divide SSR by (N-1) - this is Variance or ( $S^2$ )
- Take square root of variance - this is S or Standard Deviation
- For this exercise, SD should be near 2.8

Psychology 402 - Spring 2020 - Dr. Michael Diehr

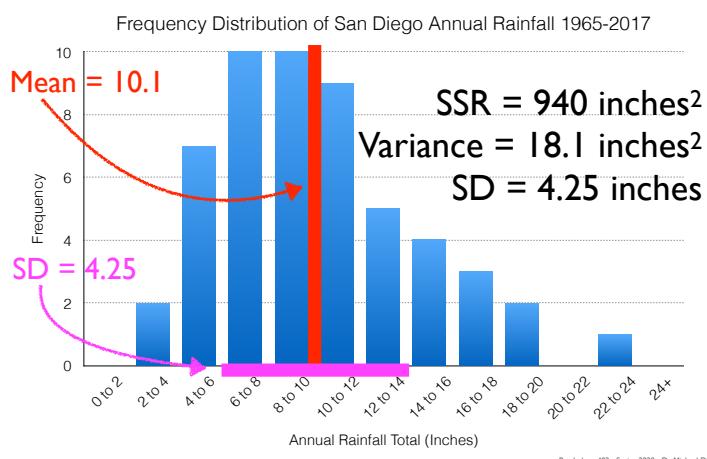
341

## Review

- Themes
  - 18th-19th century
  - 19th-20th century
- Theories of Human Development
  - Creationism
  - Polygenism
  - Evolution
  - Genetics
- Controversy
  - IQ testing of various groups

355

Psychology 402 - Spring 2020 - Dr. Michael Diehr


## Review

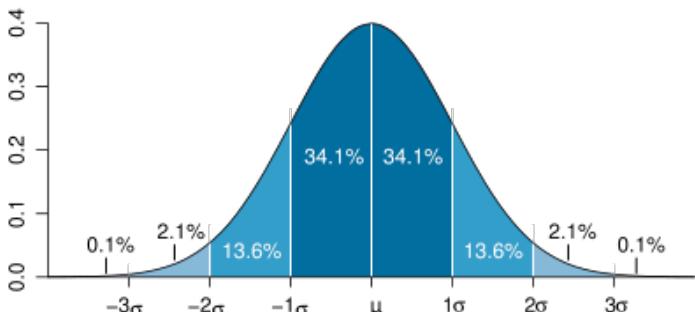
- Why Numbers?
  - pros
  - cons
- Distributions
  - Tables
  - Graphs

356

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## SSR, Variance and SD




- Frequency Distribution aka Histogram
  - graphically shows data
- Central Tendency
  - mean, median, mode
- Dispersion or Variation
  - residual
  - sum of residuals = 0
  - sum of squared residuals > 0
  - SSR/N = Variance
  - $\text{Sqrt}(\text{Variance}) = \text{Standard Deviation}$

Psychology 402 - Spring 2020 - Dr. Michael Diehr

358

## Review

# Review : Distributions



In a normal distribution, about 68.2% of values fall within  $\pm 1$  SD

359

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# Standard Deviation

- SD = Square root of Variance

$$S = \sqrt{\frac{\sum_{i=1}^N (d_i)^2}{N}}$$

$$S = \sqrt{\frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N}}$$

Psychology 402 - Spring 2020 - Dr. Michael Diehr

360

## Exercise: key points

- Some events (such as the roll of a die) have a flat (or ‘uniform’) distribution, but these are rare.
- Many big events are composed of many small events.
- Events in the real world often are distributed in a (nearly) normal distribution
- Assuming a normal distribution, the easiest way to describe the data is by two factors: Mean and SD.

361

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Types of Statistics

- Descriptive:
  - Goal: help you describe the data
  - reduce the amount of data necessary for understanding
  - don’t draw conclusions -- “just the facts”
- Inferential:
  - Goal: draw conclusions from your sample to the larger data set (population)

361

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Measurement Scales

- Nominal
- Ordinal
- Interval
- Ratio

382

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Nominal Scale

- Nominal: Name or ID only
  - red, blue, green....
  - john, tony, fred...
  - Sci2-243, Sci2-245...
- does not signify Ordering, Ranking, or More/Less
- Gotcha: even if used with Numbers it may be still a Nominal.
- Example: colors, names, room numbers, ID numbers

383

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Ordinal Scale

- Ordinal : ordering
  - first, second, third....  
1, 2, 3...  
A, B, C...
  - signifies Order, but can't assume distance between items is the same, e.g. the difference between an A and a B may be much different than a B and a C
- Example: Class Rank, Assignment Grade, Product Ratings

384

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Interval Scale

- Interval: specifies orders AND inter-item distance
  - -3, -2, -1, 0, 1, 2, 3.... 100, 105, 115
  - the difference between two numbers IS the same, e.g. 100 to 105 should be the same amount as 105 to 110
- Does NOT have an absolute zero.
- Example: temperature in Degrees Farenheit

385

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Ratio Scale

- Ratio: specifies orders AND inter-item distance and has absolute zero
  - 0, 1, 2, 3.... 100, 105, 115
  - the difference between two numbers IS the same, e.g. 100 to 105 should be the same amount as 105 to 110
- Does have an absolute zero.
- Example: temperature in Degrees Kelvin

386

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Measurement Scales

|          | Magnitude | Equal Intervals | Absolute Zero |
|----------|-----------|-----------------|---------------|
| Nominal  |           |                 |               |
| Ordinal  | ✓         |                 |               |
| Interval | ✓         | ✓               |               |
| Ratio    | ✓         | ✓               | ✓             |

387

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Scales: Practical Info

- Nominal Scale: common
  - common stats: Count, Frequency, Mode
- Ordinal Scale: less common
  - stats: specialized “nonparametric” techniques required
- Ratio and Interval: common
  - Often can be treated identically with same statistical techniques

388

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Descriptive Statistics

- Count (N)
- Range (minimum, maximum)
- Frequency Distribution (histogram)
- Rank order, percentile (%ile)
- Central Tendency
  - Mean
  - Median
  - Mode
- Variation / Dispersion (Variance, Standard Deviation)

389

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Population vs. Sample

- Ideally, measure *everyone* to get the exact value (*Population parameter*)
- Practically, this is impossible.
- Take samples instead, and calculate the *Sample statistic*.
- The “Law of Large Numbers”, “Sampling Theory”, “Central Limit Theorem” makes life easier
- [Central Limit Theorem Exercise \(Javascript\)](#)
- Some formulas differ for *Population* vs. *Sample* (divide by N or divide by N-1 ?)

399

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Population v. Sample

|                       | Population              | Sample                         |
|-----------------------|-------------------------|--------------------------------|
| <b>Definition</b>     | the entire set of items | the actual subset you measured |
| <b>Descriptives</b>   | “Parameters”            | “Statistics”                   |
| <b>Symbols</b>        | Greek                   | Roman                          |
| <b>Mean</b>           | $\mu$                   | $\bar{x}$                      |
| <b>Std. Deviation</b> | $\sigma$                | $s$                            |
| <b>Variance</b>       | $\sigma^2$              | $s^2$                          |
| <b>Divide by</b>      | N                       | N-1                            |

400

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Law of Large Numbers

- If you take enough\* samples, the sample mean approaches the population mean.
- Example: a coin has two sides. If heads=1 and tails = 0, then the average expected result is exactly 50% Heads (0.5) in the long run.
- However, if you flip a coin just a few times, getting exactly 0.5 is not likely.
- The LLN states that you will if you take enough samples.

\* what is “enough”? Rule of thumb : 100.

404

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## LLN Demonstration

- Law of Large Numbers
- [Demonstration with Coin Flips](#)

405

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Logical Fallacies

406

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Logical Arguments

- Logical arguments or inferences generally have several components:
  - Premises
  - Conclusions
- Example:
  - Premise: All English people are musicians
  - Premise: John Lennon was English
  - Conclusion: John Lennon was a musician

408

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Logical Arguments 2

- An Inference can be either Valid or Invalid -- this refers to the Structure of the argument (not the Facts themselves)
  - All A are B
  - All C are A
  - All C are B
- A Valid inference can still come to a false conclusion, and vice-versa

409

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Logical Fallacies

- A Logical Fallacy generally means that your inference is Invalid to begin with. In addition, your facts may or may not be true, but the flaw in reasoning has occurred before you even apply facts.
- Example: Affirming the consequent
- If P, then Q      bank owners are rich  
Q is true      Bill Gates is rich  
Therefore P      Bill Gates works at a bank

410

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Cognitive Bias Codex



411

Dr. Michael Diehr

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Biased Sample

- Every individual x that we have seen from sample X has characteristic Z  
Therefore ALL X have characteristic Z
- Every student I talk to in this class is interested in Psychology  
Therefore, ALL students are interested in Psychology

412

## Nominal and Numeric

- Nominal Fallacy:** The tendency to believe that something has a name or identification, it exists or has special meaning.  
“I am sleepy” vs. “I am suffering from activity-induced-rest-reduction-performance-impairment syndrome”
- Numerical Fallacy:** belief that something has been measured and assigned a number, it actually exists. “I’m really sad” vs. “I scored a 32 on the Beck Depression Inventory”

413

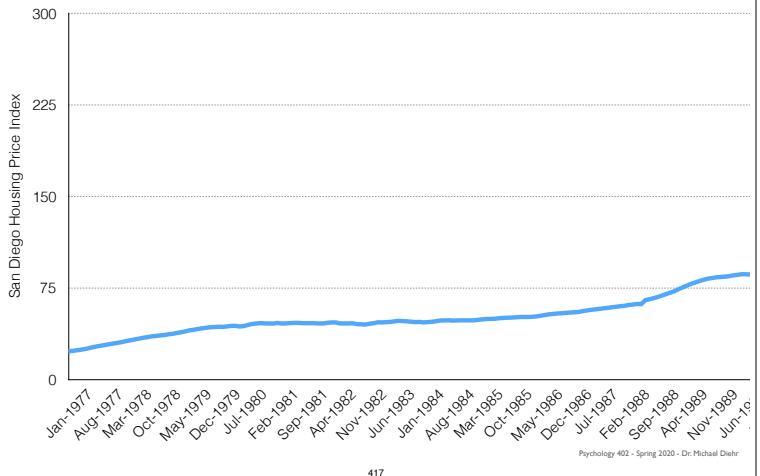
Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Reification Fallacy

- To Reify - to make something more concrete or real
- Examples:
  - “An A student”
  - “High IQ”
  - “Top of the class”
  - “A F Grade”

414

Psychology 402 - Spring 2020 - Dr. Michael Diehr


## Ranking Fallacy

- Reducing a complex phenomenon (e.g. intelligence), giving it a single number (reification) and then ordering based on that number
- Examples:
  - A IQ of 93 is better than an IQ of 90
  - An income of \$50,000 is better than \$45,000

415

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Hasty Generalization



417

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Other Fallacies

- Begging the question -- circular argument
- Correlation implies causation
- Post hoc ergo propter hoc (*after this, therefore because of this*)
- Appeal to Authority
- Ad-hominem
- Straw Man
- False Dilemma

418

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Significant Figures

- “digits of precision” or “sig. fig.”
- Ignoring *leading zeros*, how many digits in the measurement?
  - 00123 has 3 sig. fig.
  - 12003 has 5 sig fig
  - -9.87 has 3 sig fig
  - 0.000987 has 3 sig. fig.
  - 12.1 has 3 sig. fig.
  - 12.0 has 3 sig. fig.
- Please use 3 sig fig for this class
- Note: not the same as “decimal places”

419

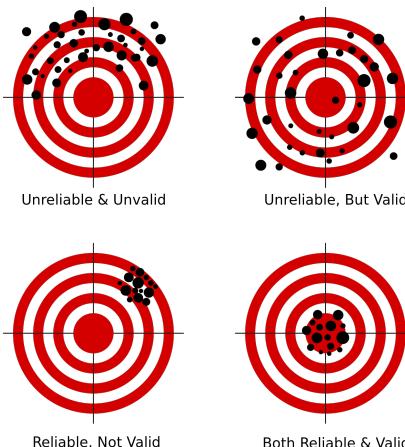
Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Precision vs. Accuracy

- Precision : the level of detail a measurement is made with, often specified with an error-range
  - “about 6 feet plus or minus 1 foot” vs. “6 foot 11 inches plus or minus 1 inch”
- Accuracy: how close the measured value is to the actual value, does it “hit the target”
  - Think arrow vs. shotgun
- A number can be precise and accurate, precise but inaccurate, or accurate but imprecise.

420

Psychology 402 - Spring 2020 - Dr. Michael Diehr


## Precision Fallacy

- A number that is *precise* may seem to be *accurate* when it is not
- A measurement that is *reliable* may seem to have *validity* when it does not

421

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Precision vs. Accuracy



- Target shooting analogy
- Similar to Reliability vs. Validity

Psychology 402 - Spring 2020 - Dr. Michael Diehr

422

423

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Fallacies re: Probability

- Classical
- Gambler's Fallacy
- Bayesian Reasoning

## 9 Heads in a row

- You are flipping a coin, and get 9 heads in a row  
H H H H H H H H H
- What is the % chance the next flip will be a H ?
- Three common answers:
  - 50/50
  - more likely Heads
  - more likely Tails

424

Psychology 402 - Spring 2020 - Dr. Michael Diehr

425

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## 9 Heads: Classical Inference

- Coin flips are independent 50/50 events, therefore 50% : Logical/Statistical
- This is the *\*correct\** answer for a fair coin

## LLN Demonstration

- Law of Large Numbers
- Demonstration with Coin Flips

426

Psychology 402 - Spring 2020 - Dr. Michael Diehr

427

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## 9 Heads: Gambler's Fallacy

- Coin flips are independent 50/50 events, but we just saw 9/10 heads, therefore a Tail is "due"
- This is the "Gambler's Fallacy" and one reason Casinos make tons of money. The reasoning is faulty.
- Note: when dealing with draws w/o replacement, this logic is *\*correct\**. For example, a single-card blackjack deck -- if no face cards have come up after 30 cards, then face cards are due

## 9 Heads: Bayesian Statistics

- Coin flips are supposed to be 50/50 events, but we just saw 9/10 heads, therefore the data is telling us that perhaps this is not a fair coin.
- Bayes' theorem suggests you evaluate the prior probabilities in determining future behavior
- In this case, you'd conclude that Head is more likely

428

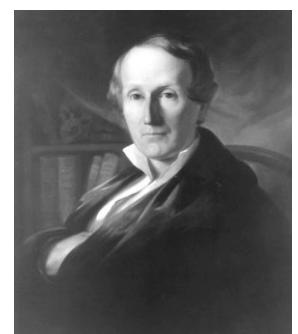
Psychology 402 - Spring 2020 - Dr. Michael Diehr

429

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Louis Agassiz

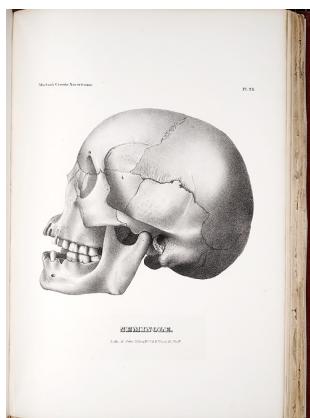
- Swiss-born, European-trained biologist / geologist
- Came to Harvard in 1847
- Creationist -> Polygenist
- Taxonomist
- Resisted Darwin's theory of Evolution
- d. 1873




Psychology 402 - Spring 2020 - Dr. Michael Diehr

460

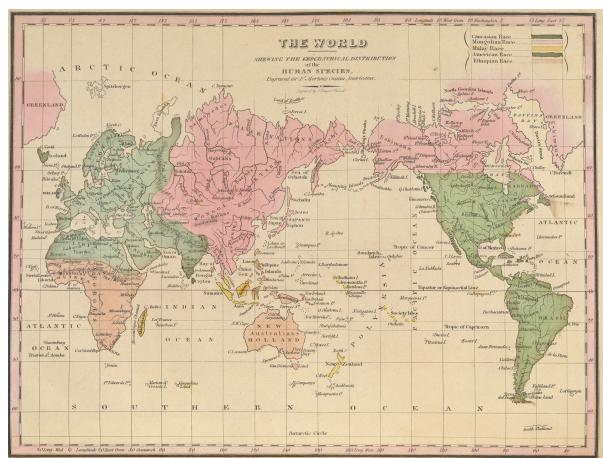
## Review: Samuel George Morton


- Theory of Polygenism
  - Humans are composed of different species, created by god
- Craniometry
- Biological Determinism
- “Scientific Racism”
- The “American School”
- d. 1851



Psychology 402 - Spring 2020 - Dr. Michael Diehr

461


## Crania Americana



Samuel George Morton  
1839

462

Psychology 402 - Spring 2020 - Dr. Michael Diehr



Psychology 402 - Spring 2019 - Dr. Michael Diehr

464

## Morton's Data as printed

| Race      | N   | Cranial Volume Mean |
|-----------|-----|---------------------|
| Caucasian | 52  | 87                  |
| Mongolian | 10  | 83                  |
| American  | 144 | 82                  |
| Malay     | 18  | 81                  |
| Ethiopian | 29  | 78                  |

466

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Data, corrected

| Race      | Mean (Morton) | Mean (corrected) |
|-----------|---------------|------------------|
| Caucasian | 87            | 87               |
| Mongolian | 83            | 87               |
| American  | 82            | 86               |
| Malay     | 81            | 85               |
| Ethiopian | 78            | 83               |

467

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Seed vs. Shot

| Race      | Difference (seed - shot) |
|-----------|--------------------------|
| Caucasian | 1.8                      |
| Mongolian | n/a                      |
| American  | 2.2                      |
| Malay     | n/a                      |
| Ethiopian | 5.4                      |

469

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Morton's errors

- Fundamental arithmetic errors
- Data selection errors
- Failure to measure or control for external variables (biological sex, body size, etc.)
- Basic Statistical errors (averaging measurements from unequal size subgroups)
- The racist thumb press?
- Is he a liar? Conscious or subconscious?

470

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Internal vs. External Validity

- Internal Validity - how did it work?
  - were the methods good
  - did the IV cause the DV
- External Validity - what does it mean?
  - does skull size indicate IQ?
  - does IQ indicate personal worth?

471

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Is skull size related to IQ?

- Yes. No. Maybe?
- Correlation between IQ and brain size:  $R = 0.24$  (Pietschnig, 2015)
- $R^2 = \sim 6\%$  which means 94% of variance is *not explained*
- Thus, observed 3-4 cubic inch difference between the races would account for, *at most*, a 2-3 point IQ difference.
- But... men have ~10% larger brains than women, but do not show higher IQ (more on this later)

474

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Review

- Frequency Distribution aka Histogram
- Normal Curve
  - CLT, Mean (SD)
- Law of Large Numbers
- Scales of Measurement
- Population vs. Sample
- Logical Fallacies
  - Precision vs. Accuracy
    - Reliability vs. Validity
  - Gambler's Fallacy

478

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Comparing Scores

- Compare a single score to the population
- One way: difference scores
- Problem: Is a difference of “3” big or little? On a 100 point test it’s not very large, but on a 10 point test it’s the difference between an A and a C

479

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Comparing Scores

- Desire a system independent of the raw score units (just like letter grades)
- Two methods:
  - Ranks & Percentile Ranks...
  - Standard Scores...

480

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Ranks, Percentiles

- Given a distribution of scores, and a single score
- **Rank** = the item # of the single score when sorted high to low
- **Percentile Rank** = the % of scores which are lower than the given score
- **Percentile** = the score at which a given percent of scores are below a given score
- Note: “**Percentile**” often used informally to mean “**Percentile Rank**”

481

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Rank & Percentile

- Infant mortality per 1000 live births
- Sorted low to high

| Country    | Score |
|------------|-------|
| Sweden     | 2.4   |
| Japan      | 3.4   |
| France     | 4.5   |
| USA        | 7.5   |
| Colombia   | 20.4  |
| China      | 37.9  |
| Bolivia    | 66.4  |
| Ethiopia   | 142.6 |
| Mozambique | 148.6 |
| Zambia     | 168.1 |

482

Psychology 402 - Spring 2020 - Dr. Michael Diehr

## Rank & Percentile

- Determine Rank #

| Country    | Score | Rank |
|------------|-------|------|
| Sweden     | 2.4   | 1    |
| Japan      | 3.4   | 2    |
| France     | 4.5   | 3    |
| USA        | 7.5   | 4    |
| Colombia   | 20.4  | 5    |
| China      | 37.9  | 6    |
| Bolivia    | 66.4  | 7    |
| Ethiopia   | 142.6 | 8    |
| Mozambique | 148.6 | 9    |
| Zambia     | 168.1 | 10   |

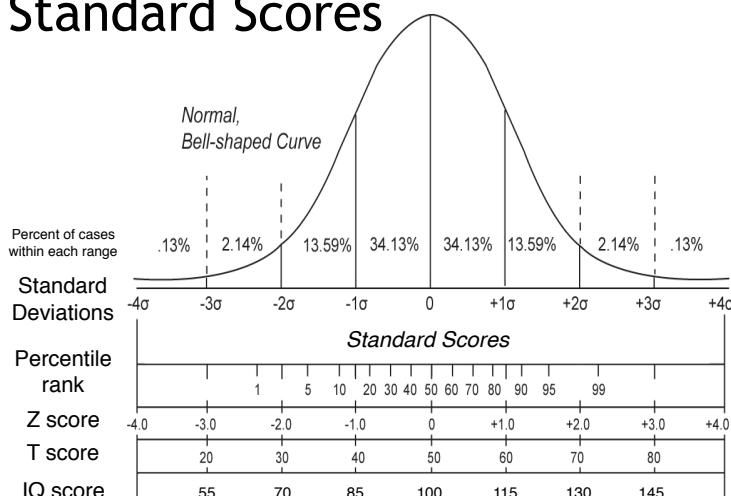
483

Psychology 402 - Spring 2020 - Dr. Michael Diehr

# Percentile Rank

Percentile Rank = # of cases with worse value divided by # of cases  
e.g. France is third of 10 (it has 7 cases with worse values)  
 $7 / 10 = 70\%$

| Country    | Score | Rank | %ile Rank |
|------------|-------|------|-----------|
| Sweden     | 2.4   | 1    | 90        |
| Japan      | 3.4   | 2    | 80        |
| France     | 4.5   | 3    | 70        |
| USA        | 7.5   | 4    | 60        |
| Colombia   | 20.4  | 5    | 50        |
| China      | 37.9  | 6    | 40        |
| Bolivia    | 66.4  | 7    | 30        |
| Ethiopia   | 142.6 | 8    | 20        |
| Mozambique | 148.6 | 9    | 10        |
| Zambia     | 168.1 | 10   | 0         |


Psychology 402 - Spring 2020 - Dr. Michael Diehr

484

Psychology 402 - Spring 2020 - Dr. Michael Diehr

485

# Standard Scores



Psychology 402 - Spring 2020 - Dr. Michael Diehr

490

# Standard Scores 2

- Use the mean and standard deviation as points of reference.
- Standard score : distance from the mean, scaled by standard deviation
- Not affected by raw score units.
- Different standard scores mean the same thing, but are expressed differently.
  - just like how 1.0 and 100% mean the same thing
- Unfortunately, there are several different Standard Score systems!

Psychology 402 - Spring 2020 - Dr. Michael Diehr

485

# Standard Scores: Z, T, IQ

|                       | Z scores | T scores    | IQ scores    |
|-----------------------|----------|-------------|--------------|
| Mean                  | 0        | 50          | 100          |
| SD                    | 1        | 10          | 15           |
| Example: top 3%       |          |             |              |
| Example: top 1%       |          |             |              |
| Formula: from Z Score | Z        | $(Z*10)+50$ | $(Z*15)+100$ |

Psychology 402 - Spring 2020 - Dr. Michael Diehr

491

# Norms 1

- Standard Scores provide us with a way of describing how a particular score relates to others in the population.
- Describing how an individual score relates to the population, which we assume are "normal".
- Terms "normative data" and "norms"
- Key questions: What is the normative group? What features or factors of the group may affect scores?

Psychology 402 - Spring 2020 - Dr. Michael Diehr

493

| z-Score<br>( $x - \bar{x}$ ) / s | T-Score<br>$10z + 50$ | Wechsler IQ<br>( $15z + 100$ ) | Percentile Rank |
|----------------------------------|-----------------------|--------------------------------|-----------------|
| 3.0                              | 80                    | 145                            | 99.9            |
| 2.9                              | 79                    | 144                            | 99.8            |
| 2.8                              | 78                    | 142                            | 99.7            |
| 2.7                              | 77                    | 141                            | 99.6            |
| 2.6                              | 76                    | 139                            | 99.5            |
| 2.5                              | 75                    | 138                            | 99.4            |
| 2.4                              | 74                    | 136                            | 99.2            |
| 2.3                              | 73                    | 135                            | 98.9            |
| 2.2                              | 72                    | 133                            | 98.6            |
| 2.1                              | 71                    | 132                            | 98.2            |
| 2.0                              | 70                    | 130                            | 97.7            |
| 1.9                              | 69                    | 129                            | 97.1            |

Psychology 402 - Spring 2020 - Dr. Michael Diehr

492

## Norms 2

- “norm-referenced” tests vs. “criterion-referenced” tests.  
Example: an 85 year old in excellent shape could be in the top 5% of his class for firefighting ability, but this may still be a “failing” grade.
- Common factors that may matter:
- Gender, Age, Education, Ethnicity/Race, Language, Handedness, Height, Weight...