

Ch. 3: Correlation & Linear Regression

274

Psychology 402 - Fall 2021 - Dr. Michael Diehr

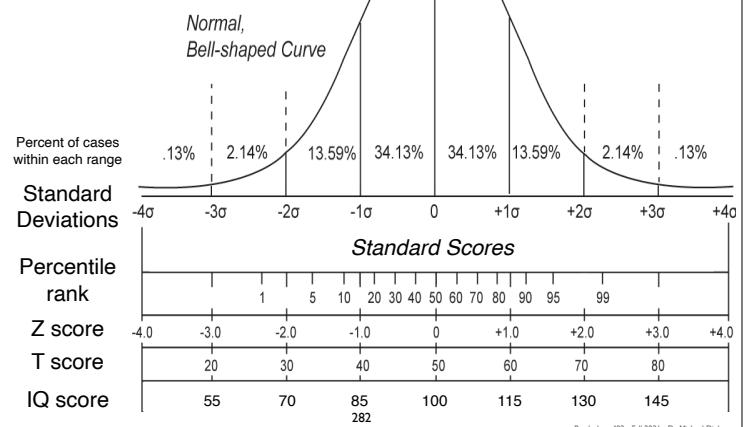
Copyright © 2020 Michael Diehr
All Rights Reserved

For use only by students enrolled
in my sections of Psyc 402
through December 2020.

May not be posted, shared or uploaded
online without permission.

275

Psychology 402 - Fall 2021 - Dr. Michael Diehr


Review

- Norms and Standard Scores:
 - Rank, Percentile Rank
 - Z, IQ, T

281

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Standard Scores

Ch. 3: Correlation & Linear Regression

- Relationships between 2 variables
- Scatterplots
- Linear Regression
- Exercise 2
- Correlation
- Race / DNA

283

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Number of variables

- One variable, one dimension
- Number Line
- Frequency Distribution / Histogram
 - 2 dimensional graph of 1D data
- Difference Score
 - 1 dimension
 - 2 dimensions

284

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Bivariate relationships

- “is factor A related to factor B”?
- Methods of analysis...
 - Anecdotal / Clinical
 - Numerical : simple 2x2 analysis
 - Visually -- scatterplots
 - see relationships and problems w/data
 - can’t test hypothesis
 - Statistically -- correlation & regression
 - hard to detect problems w/data
 - easy to test hypothesis

285

Psychology 402 - Fall 2021 - Dr. Michael Diehr

286

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Anecdotal / Clinical

- Many interesting findings began from non-scientific approaches
- “Intuition” that something is related through experiencing multiple situations
- Pattern recognition - Good and Bad
- Problems -- faulty memory, confirmation biases, prejudice, etc...
- Next step after a “gut” feeling : design experiment and collect data.

287

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Simple numerical analysis

- Simplify:
 - use categorical variables
 - or convert continuous variables to categorical
- Use extreme cases to maximize effect
- Compute percentages in a 2x2 matrix
- Do the results suggest an effect?

- Compute Chi-square statistic to judge significance

288

Psychology 402 - Fall 2021 - Dr. Michael Diehr

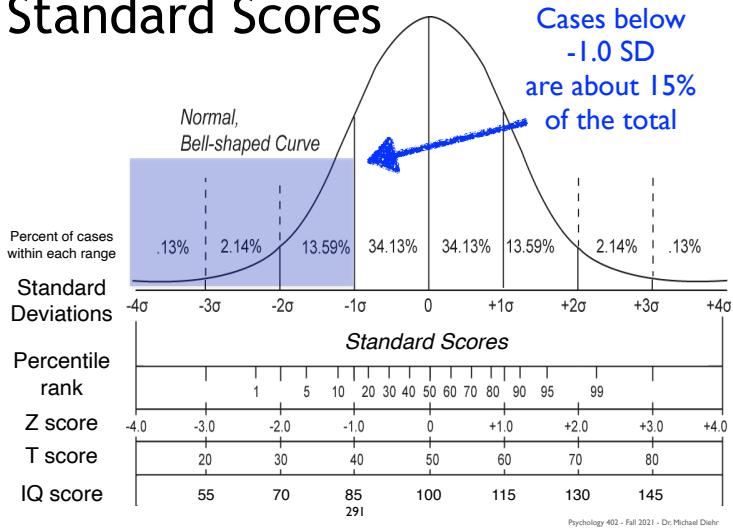
Dichotomous Variables

- The simplest form of categorical
- Aka “binary”
- Examples:
 - 1/0
 - yes/no
 - pass/fail
 - true/false
 - healthy/sick
 - normal/impaired
 - etc.

289

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Example


- “I think there is brain dysfunction in HIV disease” as measured by neuropsychological testing
- Medical status: control vs. HIV+ symptomatic
- NP test results: normal vs. impaired

		Medical Status	
		Control	HIV+
NP Status	Normal	85%	52%
	Impaired	15%	48%

290

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Standard Scores

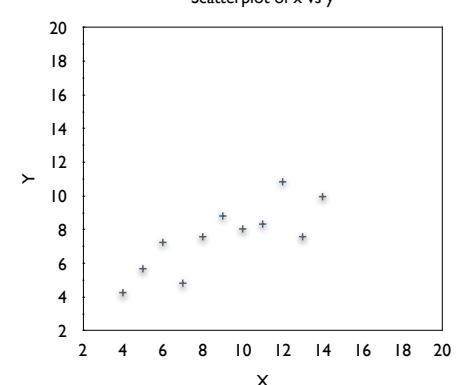
2x2 Analysis

- Pro: easy to understand
- Con: using binary categories reduces *statistical power*
- Conclusion: other Graphical and Statistical methods should be used as well.

292

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Scatterplots


- Graph two variables in relation to each other on two-dimensional X, Y axis
- Easy to see
 - relations
 - problems
- Can't prove relationship is "significant"
- Difficult to interpret clinically or in "common sense" terms

293

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Scatterplots

x	y
10	8.04
8	7.58
13	7.58
9	8.81
11	8.33
14	9.96
6	7.24
4	4.26
12	10.84
7	4.82
5	5.68

294

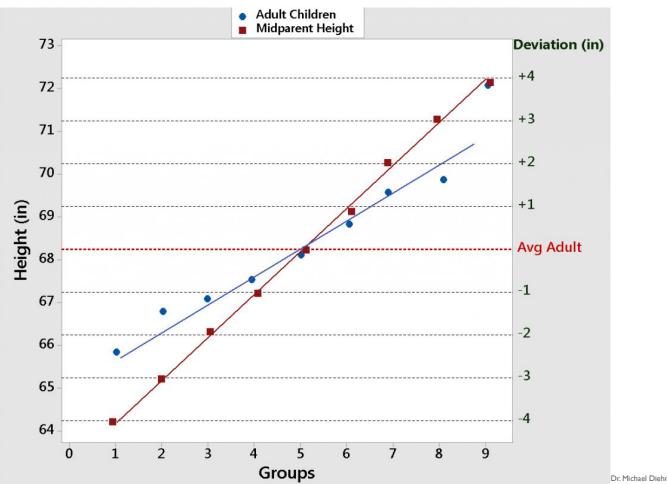
Psychology 402 - Fall 2021 - Dr. Michael Diehr

Linear Regression

- Assume X and Y are related
- Assume relationship is linear
- Model with single straight line
- Pick the line that best "fits" our data
- Other names: fitting a line, finding the trend, creating a trendline, best fit line...
- Residuals = difference between prediction and actual value
- Linear Regression minimizes the square of the residuals, often called "Ordinary Least Squares"

295

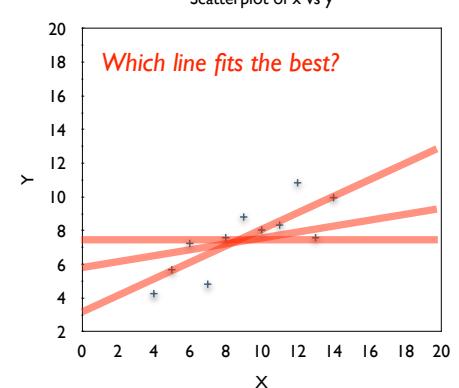
Psychology 402 - Fall 2021 - Dr. Michael Diehr


Why "Regression"

- Frances Galton
- Height of children vs parents.
- Tall parents have tall children (and vice versa)
- But children are closer to the mean than their parents (by a factor of $\sim 2/3$)
- Galton called this "Regression to the Mean"
- His paper fit** straight lines to data points.
- The technique has been called "regression" ever since
- ** He never calculated the lines, he just eyeballed them

296

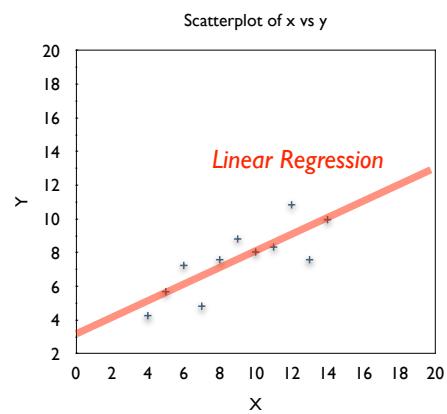
Psychology 402 - Fall 2021 - Dr. Michael Diehr


Regression to the Mean

Linear Regression

Equation:
 $y = 3.0 + 0.5x$

Correlation
 $r_{x,y} = 0.816$

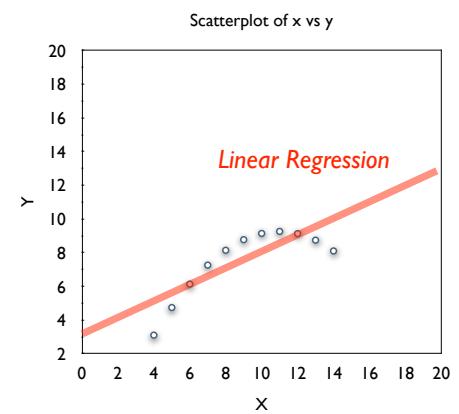


298

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Anscombe's Quartet I

x	y
10	8.04
8	7.58
13	7.58
9	8.81
11	8.33
14	9.96
6	7.24
4	4.26
12	10.84
7	4.82
5	5.68

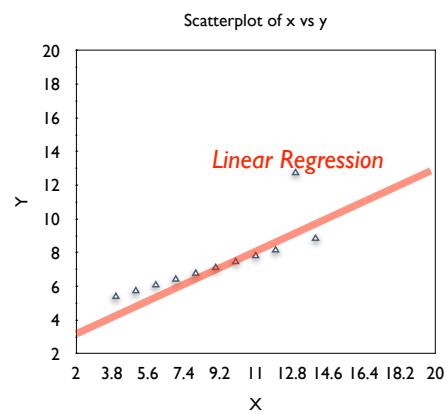


299

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Anscombe's Quartet II

x	y
10	9.14
8	8.14
13	8.74
9	8.77
11	9.26
14	8.1
6	6.13
4	3.1
12	9.13
7	7.26
5	4.74

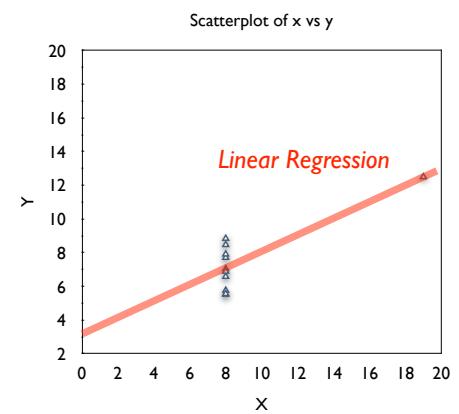


300

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Anscombe's Quartet III

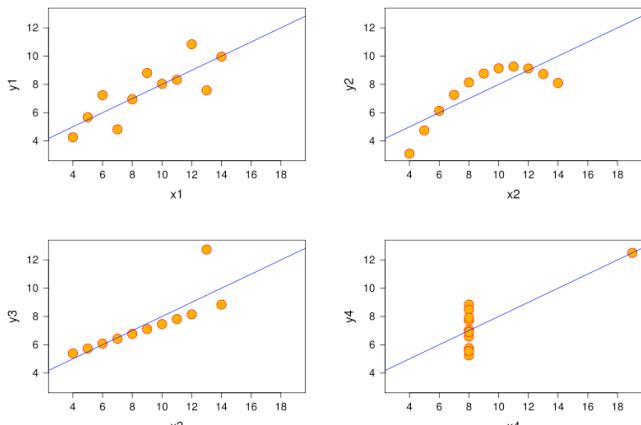
x	y
10	7.46
8	6.77
13	12.74
9	7.11
11	7.81
14	8.84
6	6.08
4	5.39
12	8.15
7	6.42
5	5.73



301

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Anscombe's Quartet IV


x	y
8	6.58
8	5.76
8	7.71
8	8.84
8	8.47
8	7.04
8	5.52
19	12.5
8	5.56
8	7.91
8	6.89

302

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Anscombe's Quartet

303

Anscombe's Quartet Summary

- Each series has the same Quantitative stats:
 - linear regression equations
 - correlations
- Each one is Qualitatively different
- Each series needs special handling
- Lesson? Graph Your Data!

304

Psychology 402 - Fall 2021 - Dr. Michael Diehr

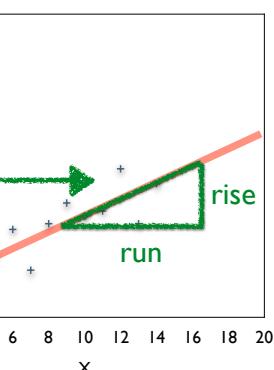
Linear Regression Equation

$$Y' = a + bX$$

Y' = predicted Y

X = actual X

b = slope


$$dY/dX$$

(rise over run)

a = intercept

Y value when $X = 0$

Scatterplot of x vs y

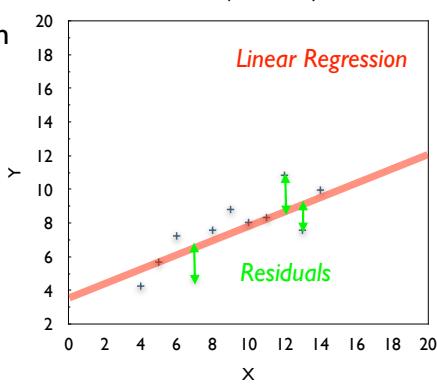
305

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Residuals in Linear Regression

- X : independent variable
- Y : dependent variable
- Model: predict Y from X
- Y' : "Y prime" : predicted Y
- $Y' = a + bX$
- Prediction is imperfect.
- Difference between predicted (Y') and actual (Y) is called a "Residual" = $(Y - Y')$
- Calculation of best fit line minimizes the sum of the squared residuals $\Sigma(Y - Y')^2$

306

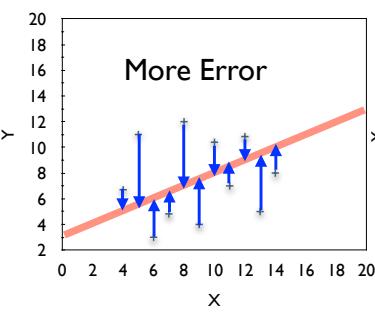

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Residuals in Linear Regression

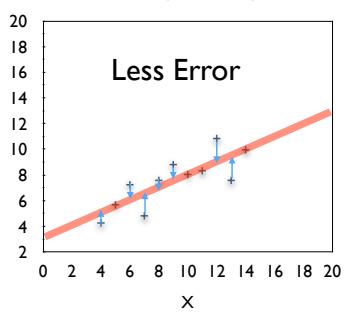
Residuals are difference between actual Y and predicted Y' ($Y - Y'$)

Graphically it is equal to how far away (vertically) a point is from the linear regression line

Scatterplot of x vs y


307

Psychology 402 - Fall 2021 - Dr. Michael Diehr


Residuals and Error

Residuals (error) are greater when Y values are further from prediction.

Scatterplot of x vs y

Scatterplot of x vs y

308

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Residuals

$$d_i = y_i - y_i'$$

- In linear regression, the difference between the predicted y and actual y

309

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Measuring “fit”

- Can we use residuals to measure how well the predicted values measure the actual values?
- E.g. how big are the residuals
- *Similar to how we calculate Standard Deviation with a single X variable*

310

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Sum of Squared Residuals

$$SSR = \sum_{i=1}^N d_i^2$$

$$SSR = \sum_{i=1}^N (y_i - y_i')^2$$

311

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Sum of Squared Residuals

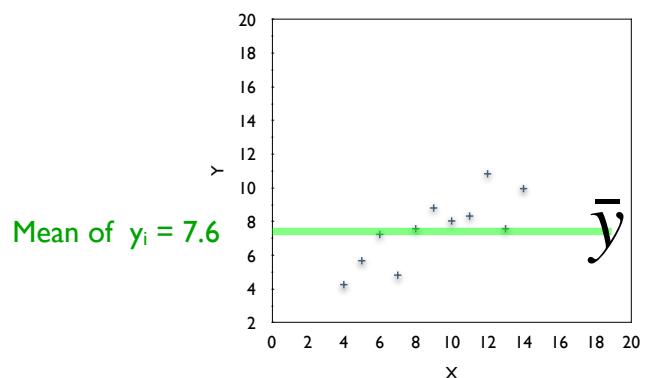
- Residual = $(Y_i - Y_i')$
- Squared residual = $(Y - Y')^2$
- SSR: Sum of squared residuals
 - Linear regression minimizes this value
- SSR is hard to interpret
- Can we standardize SSR?
- Need to compare SSR to something else

312

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Sum of Squares Total

- What can we compare SSR to?
- SST
 - similar to the null hypothesis:
 - “what would SSR be if X and Y aren’t related at all?”
 - uses the average of Y as the model


$$SST = \sum_{i=1}^N (y_i - \bar{y})^2$$

313

Psychology 402 - Fall 2021 - Dr. Michael Diehr

$$SST = \sum_{i=1}^N (y_i - \bar{y})^2$$

Scatterplot of x vs y

314

Psychology 402 - Fall 2021 - Dr. Michael Diehr

R^2

$$R^2 = 1 - \frac{SSR}{SST}$$

- $R^2 = 1 - (SSR/SST)$
- Ranges from 0 to 1 (0% to 100%)

315

Psychology 402 - Fall 2021 - Dr. Michael Diehr

R^2

- Terminology

- Coefficient of Determination

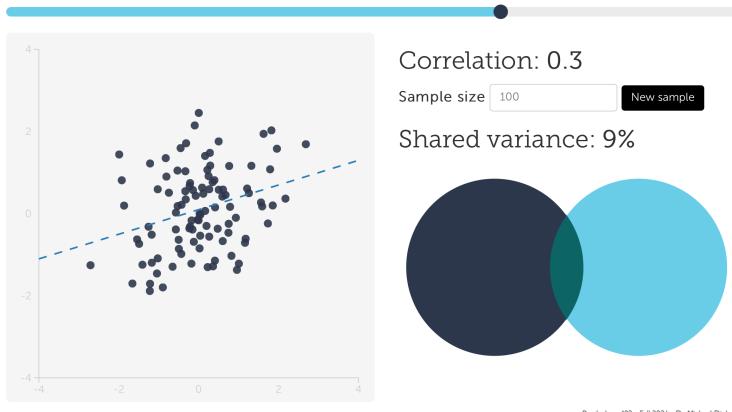
- Explained Variance

- Shared Variance

- Meaning

- what % of variation in Y values can we predict from the variation in X values

- Careful: *Correlation* is not causation


316

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Interactive Correlation Demo

- <http://rpsychologist.com/d3/correlation/>

Slide me

Ch. 3 - Part 2

322

Psychology 402 - Fall 2021 - Dr. Michael Diehr

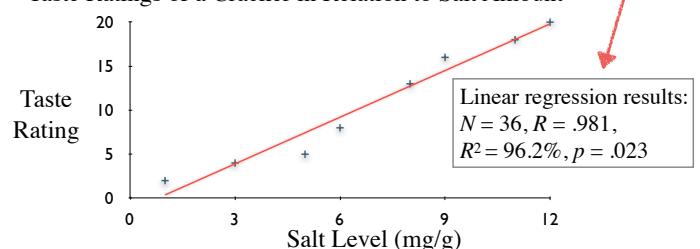
Review

- # of variables / dimensions
 - 1 Mean (SD)
 - 2 Linear Regression

325

Psychology 402 - Fall 2021 - Dr. Michael Diehr

APA-7 Figure Example


336

Title is above the figure

Figure 1

Taste Ratings of a Cracker in Relation to Salt Amount

Legend is within the figure

Note. Subjects (N=36) ate a single dry cracker which varied in the amount of salt (milligrams per gram) and rated the taste on a 20 point scale.

Note the very strong correlation, suggesting higher salt levels are strongly related to taste ratings.

Note is below the figure

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Ch. 3 - Part 3

339

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Review

342

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Standard Error of Estimate

- Residual = $(Y - Y')$
- Standard Deviation of residuals
 - measure of “average” error
 - aka “Standard Error of Estimate”
 - In Prism: $S_{y,x}$

347

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Correlation : Pearson's r

- Pearson's Product-Moment Correlation
- Measures the strength of the linear relationship between two variables
- Ranges between -1.0 and +1.0
- Is a special case of linear regression, when both X and Y have been turned into Z scores.
- r is **transitive commutative** (correlation between X and Y is same as correlation between Y and X)
- R^2 = “explained variance” is the proportion of variation in the data explained by the model.
- R^2 ranges from 0 to 1.0 (0% to 100%)

349

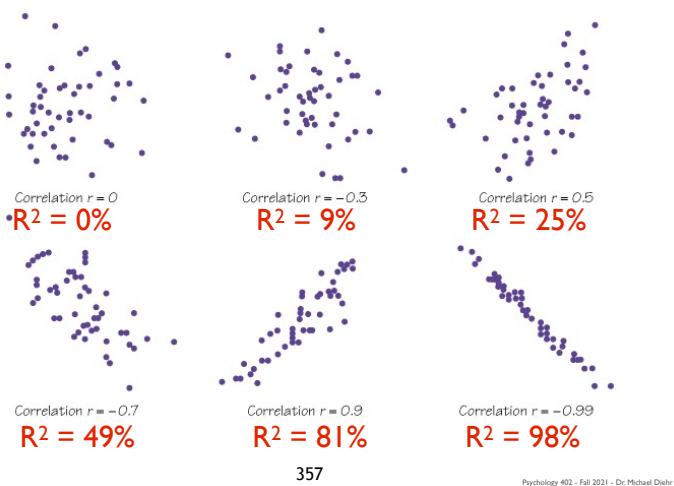
Psychology 402 - Fall 2021 - Dr. Michael Diehr

Regression vs. Correlation

	Linear Regression	Correlation
Scores	Raw	Z
Mean, Std Dev	sample means sample Std Dev	0 1
Equation	$Y' = a + bX$	$Y' = r X$
Slope	$b = \text{change in } Y \text{ per change in } X$	$r = \text{correlation coefficient}$
Slope}^2	meaningless	$R^2 = \% \text{ variance explained}$
Commutative ?	no	yes, $R_{xy} = R_{yx}$

350

Psychology 402 - Fall 2021 - Dr. Michael Diehr


R vs R^2

	R	R^2
Minimum	-1.0	0.0 (0%)
Maximum	1.0	1.0 (100%)
Meaning	correlation between X and Y	% of variance in Y explained by X
AKA	“correlation”, “correlation coefficient”	shared variance, explained variance, coefficient of determination
Notes	can be positive or negative	always positive (since it's squared)

351

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Correlations

Interactive Correlation Example

- <http://rpsychologist.com/d3/correlation/>

- R^2 or “Explained Variance” is sometimes called “Shared Variance”

358

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Other Correlation Coefficients

- Continuous (interval & ratio): Pearson's r
- Ordinal (Ranked): A B C D... 1st, 2nd, 3rd...
 - Spearman's Rho: correlation between two ordinal / ranked variables.
- Dichotomous (yes/no, one/zero, T/F, Male/Female, Pass/Fail...)
 - True vs. Artificial?

359

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Continuous vs. Dichotomous

Type of X / Type of Y	Continuous	Artificial Dichotomous	True Dichotomous
Continuous	Pearson r	Biserial r	Point biserial r
Artificial Dichotomous	Biserial r	Tetrachoric r	Phi
True Dichotomous	Point biserial r	Phi	Phi

360

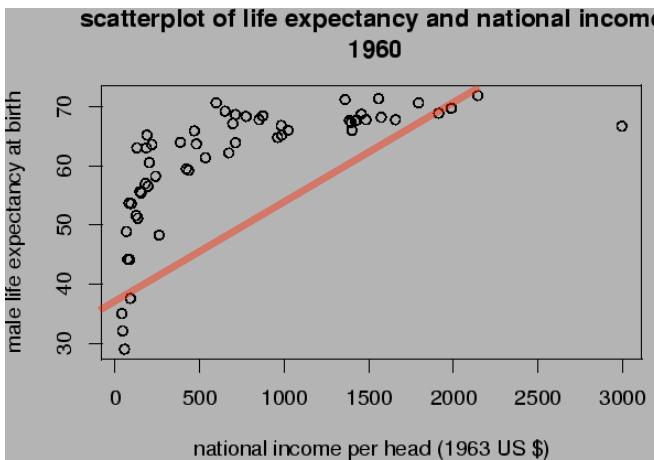
Psychology 402 - Fall 2021 - Dr. Michael Diehr

Correlation : Issues

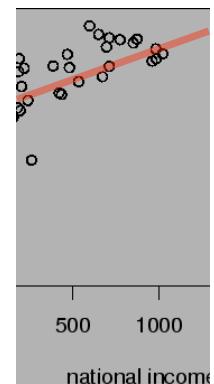
- Technical / Calculation :
 - Non-normal distribution
 - Non-linear data and relationships
 - Outliers, data errors
 - Restricted Range
- Interpretation:
 - Correlation \Rightarrow Causation
 - Third variable explanations

361

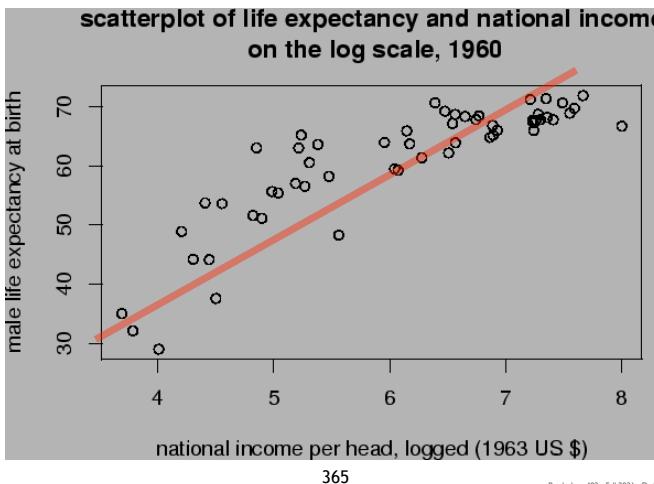
Psychology 402 - Fall 2021 - Dr. Michael Diehr

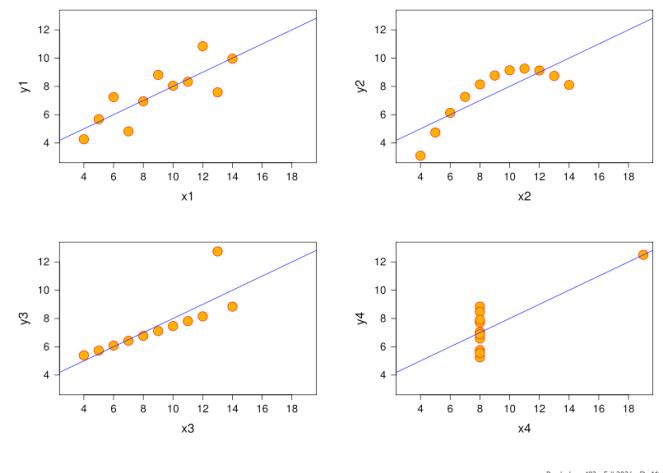

Non-linearity

- Linear Regression & Correlation assume a linear relationship between X and Y
- When it's not linear:
 - Restrict the range of X
 - Transform (log, square root, etc.)
 - other statistical analyses (Spearman's Rho...)


362

Psychology 402 - Fall 2021 - Dr. Michael Diehr


Life expectancy / national income


Restrict range of X

log transform X (or Y)

Outliers & Data Errors?

Correlation = Causation?

- A relationship (linear or otherwise) between X and Y tells us nothing about whether X causes Y
- Lack of correlation between X and Y does not mean that X doesn't cause Y
- Ice cream sales are positively related to increases in drowning deaths

368

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Hypothesis Testing

- Parameters estimated from sample data have error
- How do we know if a given estimate is correct?
- How big is the error likely to be (confidence intervals)?
- Inferential Statistics - covered later
 - Formulas to calculate probability, confidence intervals.
 - Higher N is better
 - “statistical significance” not the same as “clinical significance”

369

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Statistical vs Clinical Significance 370

- Regarding the change in the Dependent Variable (DV)
- Statistical Significance:
 - Could the change be due to chance?
 - P value ($p < .05$: less than 5% probability)
- Clinical Significance
 - Was the change big enough to matter?
 - Effect Size (R^2)
 - Depends on context

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Significance vs. Effect Size

- Two coin flips : both heads (100%)
 - big effect (50%)
 - not statistically significant ($p=0.25$)
- 1000 coin flips, 490 heads (49.0%)
 - small effect (1%)
 - statistically significant ($p=0.02$)
- 1000 coin flips, 350 heads (35%)
 - big effect (15%)
 - statistically significant ($p<.00000001$)

371

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Lies, damned lies, and statistics

- Statistical significance (P) is a function of...
- Errors of measurement (E)
- Effect Size (D)
- Sample Size (N)

- $p \sim E / (D \times N)$

372

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Reporting Results

- Headline: “Men had higher IQ than women. Results were significant $p < .001$ ”
 - → “that’s very significant”
 - → “men are much smarter than women”

- P-value : statistically significant: Yes
- Effect Size : clinically significant: ? Unknown

373

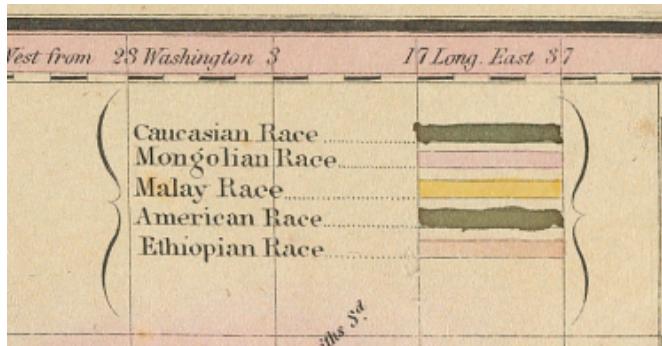
Psychology 402 - Fall 2021 - Dr. Michael Diehr

Review : Is race “real”?

- Pre-DNA theory
- Post-DNA theory

374

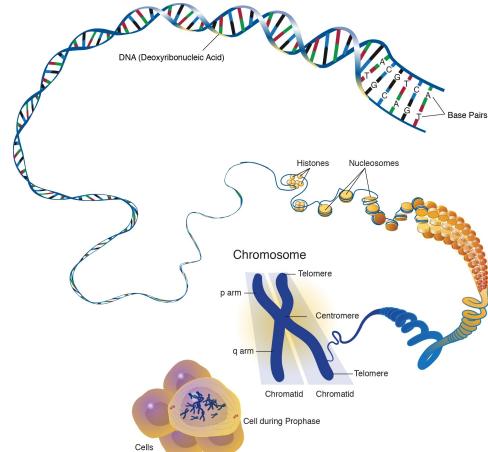
Psychology 402 - Fall 2021 - Dr. Michael Diehr


Pre-DNA

- Gold, Silver, Brass, Iron -- Plato
- “There is a physical difference between the white and black races which I believe will forever forbid the two races living together on terms of social and political equality.” -- Abraham Lincoln

375

Psychology 402 - Fall 2021 - Dr. Michael Diehr


Five Races?

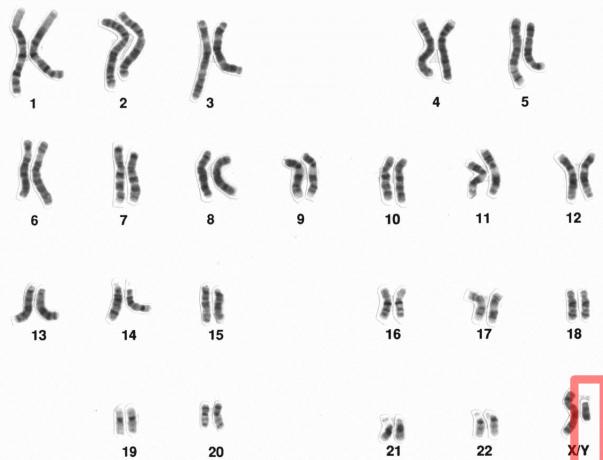
376

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Genetics : DNA

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Genetics


378

- Human genome contains about 4 billion pairs of deoxyribonucleic acid (DNA)
- DNA is Transcribed into RNA
- RNA is Translated into Proteins
- Proteins
 - serve as structural components
 - function as enzymes to catalyze biochemical reactions
- Human DNA is grouped into 46 chromosomes
 - 23 pairs, one of each pair comes from each parent
 - 22 pairs in both males and females (autosomes)
 - 1 pair determines sex: either "XX" (females) or "XY" (males)

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Humans: 46 Chromosomes - 23 pairs

380

Michael Diehr

Gene

381

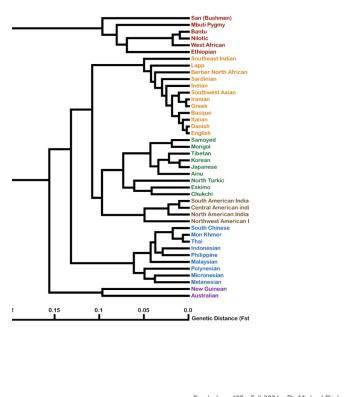
- DNA is subdivided into Chromosomes
- Chromosomes are subdivided into Genes
- Gene is a functional unit of DNA
- makes one thing (single protein or RNA)

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Genetics : Species Differences

382

organism	estimated size (base pairs)	# genes	gene size	# chromosomes
Homo sapiens (human)	3.2 billion	~25,000	1 gene per 100,000 bases	46
Mus musculus (mouse)	2.6 billion	~25,000	1 gene per 100,000 bases	40
Drosophila melanogaster (fruit fly)	137 million	13,000	1 gene per 9,000 bases	8
Arabidopsis thaliana (plant)	100 million	25,000	1 gene per 4000 bases	10
Caenorhabditis elegans (roundworm)	97 million	19,000	1 gene per 5000 bases	12
Saccharomyces cerevisiae (yeast)	12.1 million	6000	1 gene per 2000 bases	32
Escherichia coli (bacteria)	4.6 million	3200	1 gene per 1400 bases	1
H. influenzae (bacteria)	1.8 million	1700	1 gene per 1000 bases	1


Psychology 402 - Fall 2021 - Dr. Michael Diehr

Genetic Differences

- Sub-Saharan African
- Indo-European
- East Asian
- Native American
- South Asian
- Aboriginal

Fst = % of subpopulation variance

384

DNA Variation

- variation between individuals : 3mbp / person
- variation within groups : 85%
- variation between groups: 15%
 - 5% - within *population groups*
 - 10% - between *population groups*
- Note: skin color is one of the few traits where the pattern is reversed*

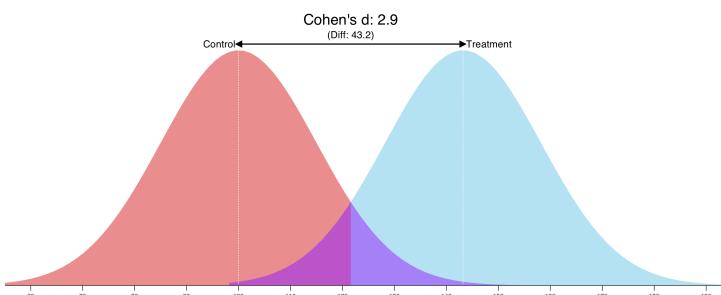
386

Psychology 402 - Fall 2021 - Dr. Michael Diehr

DNA Differences

- Identical Twins
 - 0.0%
- Human vs. Human
 - 0.1%
- Humans vs Gorillas
 - 1.6%
- Humans vs Chimps:
 - 4.0%
- Humans vs. Cats
 - 10.0%

387

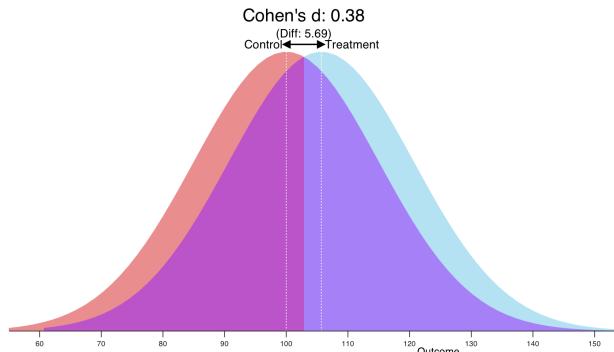

Post-DNA theory

- Variance
 - variation between individuals
 - aka variation *within races population groups*
 - variation *between population groups*

390

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Skin Color

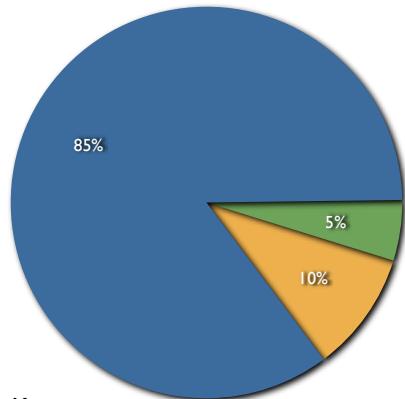


- 85% between group, 15% within group
- 98% chance blue person higher than red

391

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Most other traits

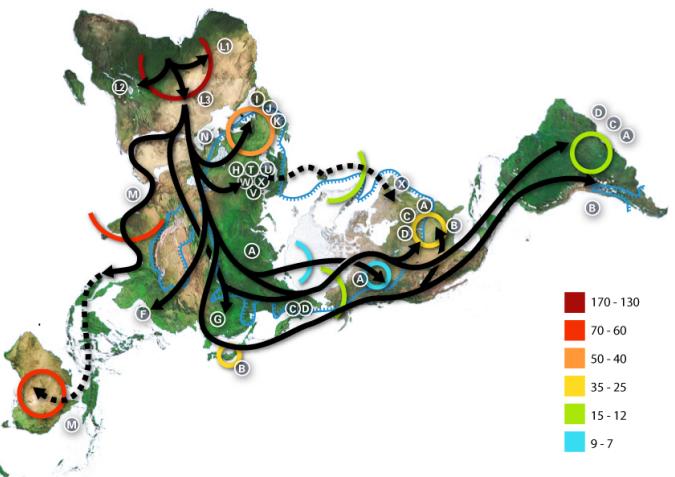

- 15% between group, 85% within group
- 61% chance blue person higher than red

392

Psychology 402 - Fall 2021 - Dr. Michael Diehr

Variance: Genetic Variation

- Within local populations
- Within "race"
- Between "race"


For example:

- 85% within Japanese
- 5% between Japanese & Korean
- 10% between Asian and Caucasian

393

Psychology 402 - Fall 2021 - Dr. Michael Dohr

Prehistorical Migration

