

Ch. 3: Correlation & Linear Regression

Copyright © 2024 Michael Diehr
All Rights Reserved
For use only by students enrolled
in my sections of Psyc 402
through the end of the semester.
May not be posted, shared or uploaded
online without permission.

408

Psychology 402 - Fall 2024 - Dr. Michael Diehr

409

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Ch. 3 - Part 1

410

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Review

418

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Ch. 3: Correlation & Linear Regression

- Relationships between 2 variables
- Scatterplots
- Linear Regression
- Exercise 2
- Correlation
- Race / DNA

423

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Number of variables

- One variable, one dimension
- Number Line
- Frequency Distribution / Histogram
 - 2 dimensional graph of 1D data
- Difference Score
 - 1 dimension
 - 2 dimensions

424

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Bivariate relationships

- “is factor A related to factor B”?
- Methods of analysis...
 - Anecdotal / Clinical
 - Numerical : simple 2x2 analysis
 - Visually -- scatterplots
 - Statistically -- correlation & regression

426

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Anecdotal / Clinical

- Many interesting findings began from non-scientific approaches
- “Intuition” that something is related through experiencing multiple situations
- Pattern recognition - Good and Bad
- Problems -- faulty memory, confirmation biases, prejudice, etc...
- Next step after a “gut” feeling : design experiment and collect data.

427

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Simple numerical analysis

- Simplify:
 - use categorical variables
 - or convert continuous variables to categorical
- Use extreme cases to maximize effect
- Compute percentages in a 2x2 matrix
- Do the results suggest an effect?

- Compute Chi-square statistic to judge significance

428

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Dichotomous Variables

- The simplest form of categorical
- Aka “binary”
- Examples:
 - 1/0
 - yes/no
 - pass/fail
 - true/false
 - healthy/sick
 - normal/impaired
 - etc.

429

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Example

- “I think there is brain dysfunction in HIV disease” as measured by neuropsychological (NP) testing
- Medical status: control vs. HIV+ asymptomatic
- NP test results: normal vs. impaired

Medical Status

		Control	HIV+
NP Status	Normal	85%	52%
	Impaired	15%	48%

430

Psychology 402 - Fall 2024 - Dr. Michael Diehr

2x2 Analysis

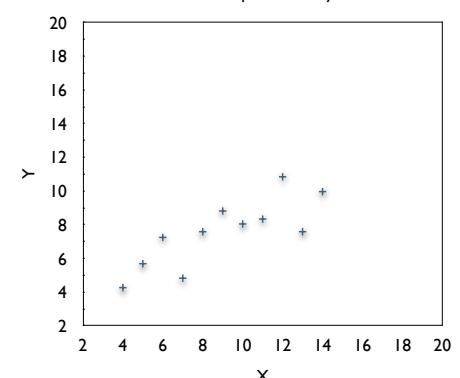
- Pro: easy to understand
- Con: using binary categories reduces *statistical power*

- Conclusion: other Graphical and Statistical methods should be used as well.

432

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Scatterplots


- Graph two variables in relation to each other on two-dimensional X, Y axis
- Easy to see
 - relations
 - problems
- Can't prove relationship is "significant"
- Difficult to interpret clinically or in "common sense" terms

433

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Scatterplots

x	y
10	8.04
8	7.58
13	7.58
9	8.81
11	8.33
14	9.96
6	7.24
4	4.26
12	10.84
7	4.82
5	5.68

434

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Linear Regression

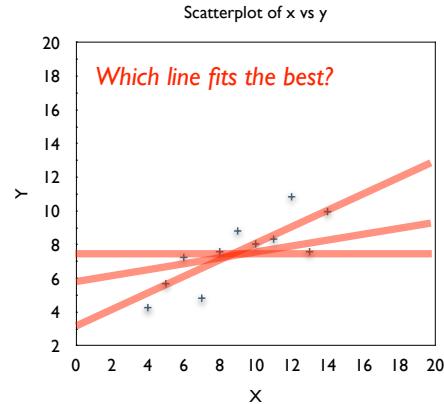
- Assume X and Y are related
- Assume relationship is linear
- Model with single straight line
- Pick the line that best "fits" our data
- Other names: fitting a line, finding the trend, creating a trendline, best fit line...
- Residuals = difference between prediction and actual value
- Linear Regression minimizes the square of the residuals, often called "Ordinary Least Squares"

435

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Why "Regression"

- Frances Galton
- Height of children vs parents.
- Tall parents have tall children (and vice versa)
- But children are closer to the mean than their parents (by a factor of $\sim 2/3$)
- Galton called this "Regression to the Mean"
- His paper fit** straight lines to data points.
- The technique has been called "regression" ever since
- ** He never calculated the lines, he just eyeballed them

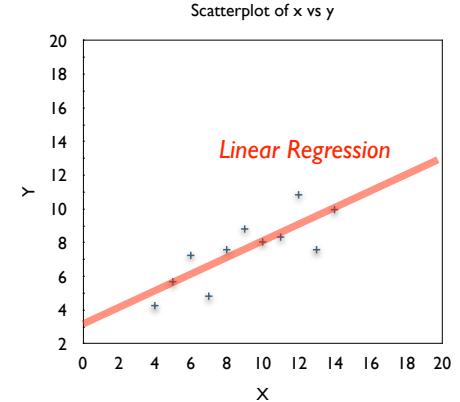

436

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Linear Regression

Equation:
 $y = 3.0 + 0.5x$

Correlation
 $r_{x,y} = 0.816$

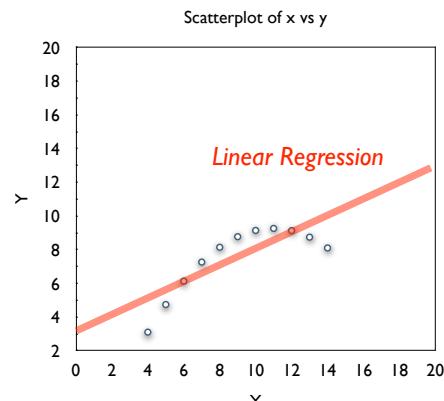


438

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Anscombe's Quartet I

x	y
10	8.04
8	7.58
13	7.58
9	8.81
11	8.33
14	9.96
6	7.24
4	4.26
12	10.84
7	4.82
5	5.68

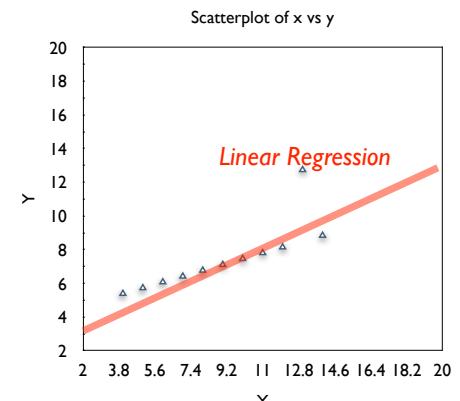


439

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Anscombe's Quartet II

x	y
10	9.14
8	8.14
13	8.74
9	8.77
11	9.26
14	8.1
6	6.13
4	3.1
12	9.13
7	7.26
5	4.74

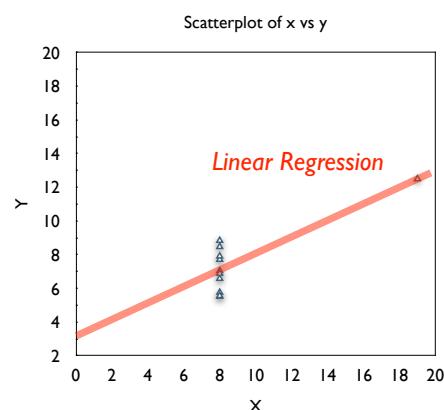


440

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Anscombe's Quartet III

x	y
10	7.46
8	6.77
13	12.74
9	7.11
11	7.81
14	8.84
6	6.08
4	5.39
12	8.15
7	6.42
5	5.73

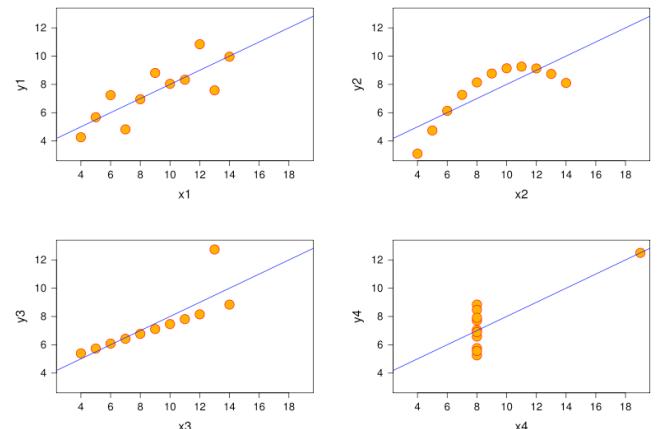


441

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Anscombe's Quartet IV

x	y
8	6.58
8	5.76
8	7.71
8	8.84
8	8.47
8	7.04
8	5.52
19	12.5
8	5.56
8	7.91
8	6.89



442

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Anscombe's Quartet

443

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Anscombe's Quartet Summary

- Each series has the same Quantitative stats:
 - linear regression equations
 - correlations
- Each one is Qualitatively different
- Each series needs special handling
- Lesson? Graph Your Data!

444

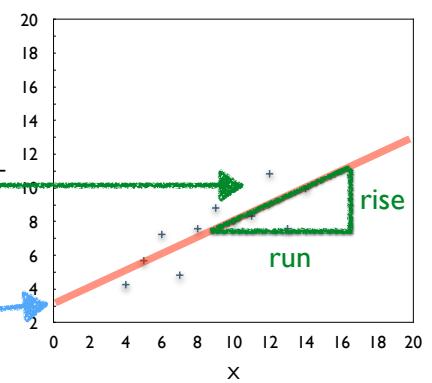
Psychology 402 - Fall 2024 - Dr. Michael Diehr

Linear Regression Equation

$$Y' = a + bX$$

Y' = predicted Y

X = actual X


b = slope

dY/dX
(rise over run)

a = intercept

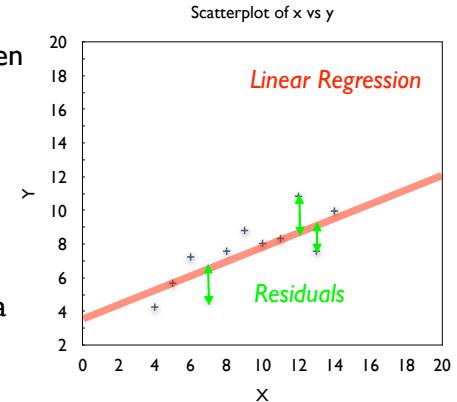
Y value when X = 0

Scatterplot of x vs y

445

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Residuals in Linear Regression

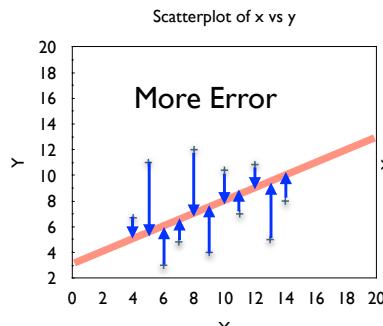

- X_i : independent variable
- Y_i : dependent variable
- Model: predict Y_i from X_i
- Y'_i : “Y prime” : predicted Y_i
- $Y'_i = a + bX_i$
- Prediction is imperfect.
- Difference between predicted (Y') and actual (Y) is called a “Residual” = $(Y_i - Y'_i)$
- Calculation of best fit line minimizes the sum of the squared residuals $\sum(Y_i - Y'_i)^2$

446

Psychology 402 - Fall 2024 - Dr. Michael Diehr

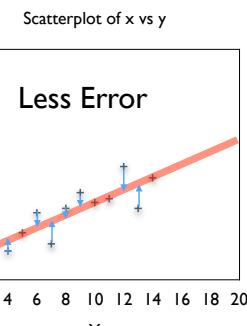
Residuals in Linear Regression

Residuals are difference between actual Y and predicted Y' ($Y - Y'$)



447

Psychology 402 - Fall 2024 - Dr. Michael Diehr


Residuals and Error

Residuals (error) are greater when Y values are further from prediction.

448

Psychology 402 - Fall 2024 - Dr. Michael Diehr

449

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Residuals

$$d_i = y_i - y'_i$$

- In linear regression, the difference between the actual y and predicted y

Measuring “fit”

- Can we use residuals to measure how close the predicted values are vs. the actual values?
- E.g. how big are the residuals
- *Similar to how we calculate Standard Deviation with a single X variable*

450

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Sum of Squared Residuals

$$SSR = \sum_{i=1}^N d_i^2$$

$$SSR = \sum_{i=1}^N (y_i - y'_i)^2$$

451

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Sum of Squared Residuals

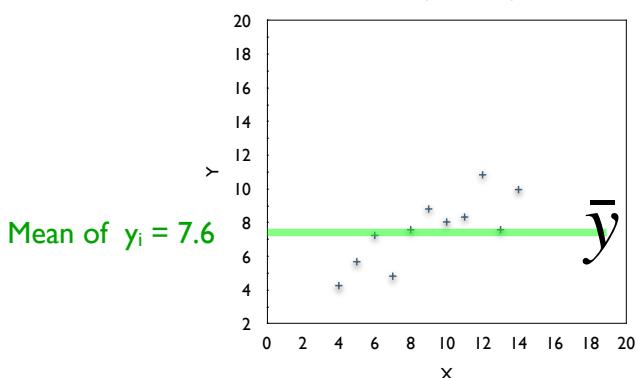
- Residual = $(Y_i - \hat{Y}_i)$
- Squared residual = $(Y_i - \hat{Y}_i)^2$
- SSR: Sum of squared residuals
 - Linear regression minimizes this value
- SSR is hard to interpret
- Can we standardize SSR?
- Need to compare SSR to something else

452

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Sum of Squares Total

- What can we compare SSR to?
- SST
 - similar to the null hypothesis:
 - “what would SSR be if X and Y aren’t related at all?”
 - uses the mean of Y as the prediction


$$SST = \sum_{i=1}^N (y_i - \bar{y})^2$$

453

Psychology 402 - Fall 2024 - Dr. Michael Diehr

$$SST = \sum_{i=1}^N (y_i - \bar{y})^2$$

Scatterplot of x vs y

454

Psychology 402 - Fall 2024 - Dr. Michael Diehr

R^2

$$R^2 = 1 - \frac{SSR}{SST}$$

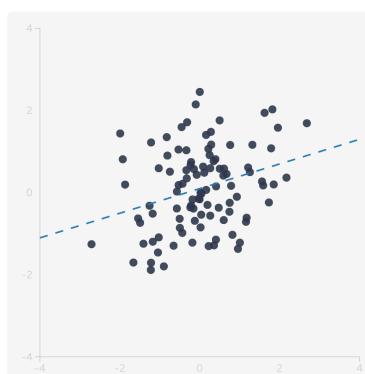
- $R^2 = 1 - (SSR/SST)$
- Ranges from 0 to 1 (0% to 100%)

456

Psychology 402 - Fall 2024 - Dr. Michael Diehr

R^2

- Terminology
 - Coefficient of Determination
 - Explained Variance
 - Shared Variance
- Meaning
 - what % of variation in Y values can we predict from the variation in X values
- Careful: *Correlation* is not causation

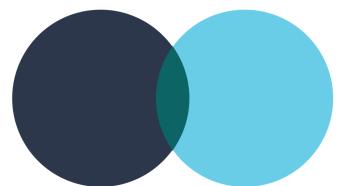

457

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Interactive Correlation Demo

- <http://rpsychologist.com/d3/correlation/>

Slide me



Correlation: 0.3

Sample size: 100

New sample

Shared variance: 9%

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Ch. 3 - Part 2

Review

464

Psychology 402 - Fall 2024 - Dr. Michael Diehr

475

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Ch. 3 - Part 3

Review

493

Psychology 402 - Fall 2024 - Dr. Michael Diehr

495

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Standard Error of Estimate

- Residual = $(Y - Y')$
- Standard Deviation of residuals
 - measure of “average” error
 - aka “Standard Error of Estimate”
 - In Prism: $S_{y,x}$

498

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Correlation : Pearson’s r

- Pearson’s Product-Moment Correlation
- Measures the strength of the linear relationship between two variables
- Ranges between -1.0 and +1.0
- Is a special case of linear regression, when both X and Y have been turned into Z scores.
- r is **transitive commutative** (correlation between X and Y is same as correlation between Y and X)
- R^2 = “explained variance” is the proportion of variation in the data explained by the model.
- R^2 ranges from 0 to 1.0 (0% to 100%)

500

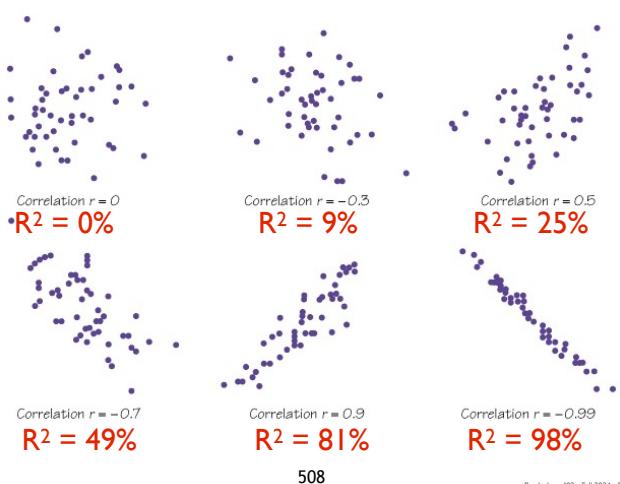
Psychology 402 - Fall 2024 - Dr. Michael Diehr

Regression vs. Correlation

	Linear Regression	Correlation
Scores	Raw	Z
Mean, Std Dev	sample means sample Std Dev	0 1
Equation	$Y' = a + bX$	$Y' = r X$
Slope	$b = \text{change in } Y \text{ per change in } X$	$r = \text{correlation coefficient}$
Slope}^2	meaningless	$R^2 = \% \text{ variance explained}$
Commutative ?	no	yes, $R_{xy} = R_{yx}$

501

Psychology 402 - Fall 2024 - Dr. Michael Diehr


R vs R^2

	R	R^2
Minimum	-1.0	0.0 (0%)
Maximum	1.0	1.0 (100%)
Meaning	correlation between X and Y	% of variance in Y explained by X shared variance, explained variance, coefficient of determination
AKA	“correlation”, “correlation coefficient”	“correlation”, “correlation coefficient”
Notes	can be positive or negative	always positive (since it's squared)

502

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Correlations

508

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Interactive Correlation Example

- <http://rpsychologist.com/d3/correlation/>

- R^2 or “Explained Variance” is sometimes called “Shared Variance”

509

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Other Correlation Coefficients

- Continuous (interval & ratio): Pearson's r
- Ordinal (Ranked): A B C D... 1st, 2nd, 3rd...
 - Spearman's Rho: correlation between two ordinal / ranked variables.
- Dichotomous (yes/no, one/zero, T/F, Male/Female, Pass/Fail...)
 - True vs. Artificial?

510

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Continuous vs. Dichotomous

Type of X / Type of Y	Continuous	Artificial Dichotomous	True Dichotomous
Continuous	Pearson r	Biserial r	Point biserial r
Artificial Dichotomous	Biserial r	Tetrachoric r	Phi
True Dichotomous	Point biserial r	Phi	Phi

511

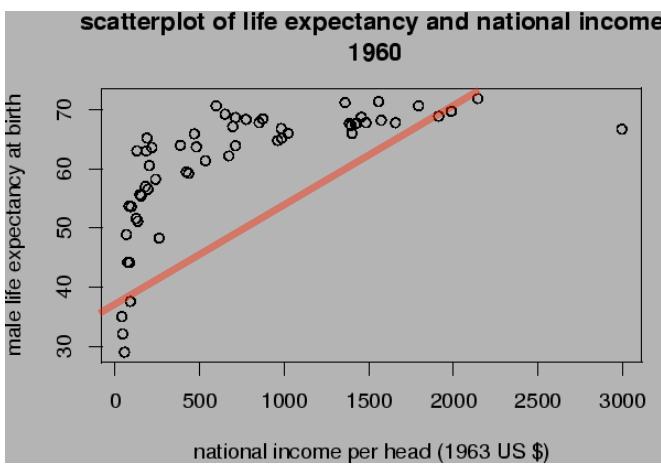
Psychology 402 - Fall 2024 - Dr. Michael Diehr

Correlation : Issues

- Technical / Calculation :
 - Non-normal distribution
 - Non-linear data and relationships
 - Outliers, data errors
 - Restricted Range
- Interpretation:
 - Correlation =? Causation
 - Third variable explanations

512

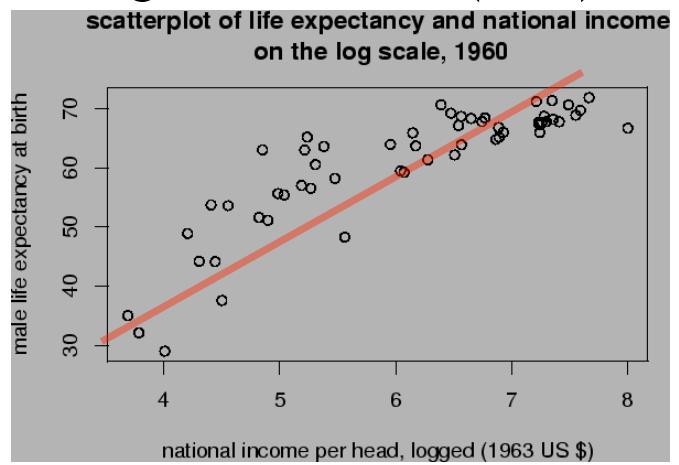
Psychology 402 - Fall 2024 - Dr. Michael Diehr


Non-linearity

- Linear Regression & Correlation assume a linear relationship between X and Y
- When it's not linear:
 - Restrict the range of X
 - Transform (log, square root, etc.)
 - other statistical analyses (Spearman's Rho...)

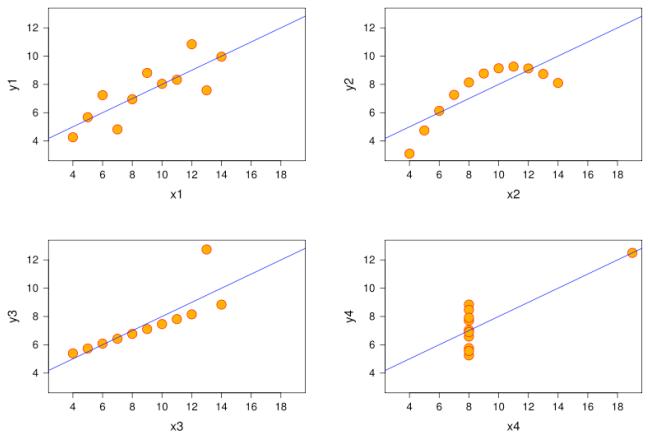
513

Psychology 402 - Fall 2024 - Dr. Michael Diehr


Life expectancy / national income

514

Psychology 402 - Fall 2024 - Dr. Michael Diehr


log transform X (or Y)

516

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Outliers & Data Errors?

518

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Correlation = Causation?

- A relationship (linear or otherwise) between X and Y tells us nothing about whether X causes Y
- Lack of correlation between X and Y does not mean that X doesn't cause Y
- Ice cream sales are positively related to increases in drowning deaths

519

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Hypothesis Testing

- Statistics estimated from sample data have error
- How do we know if a given estimate is correct?
- How big is the error likely to be (confidence intervals)?
- Inferential Statistics - covered later
 - Formulas to calculate probability, confidence intervals.
 - Higher N is better
 - “statistical significance” not the same as “clinical significance”

520

Psychology 402 - Fall 2024 - Dr. Michael Diehr

521

Statistical vs Clinical Significance

- Regarding the change in the Dependent Variable (DV)
- Statistical Significance:
 - Could the change be due to chance?
 - P value ($p < .05$: less than 5% probability)
- Clinical Significance
 - Was the change big enough to matter?
 - Effect Size (R^2)
 - Depends on context

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Significance vs. Effect Size

- Two coin flips : both heads (100%)
 - big effect size (50%)
 - not statistically significant ($p=0.25$)
- 1000 coin flips, 490 heads (49.0%)
 - small effect (1%)
 - statistically significant ($p=0.02$)
- 1000 coin flips, 350 heads (35%)
 - big effect (15%)
 - statistically significant ($p < .00000001$)

522

Psychology 402 - Fall 2024 - Dr. Michael Diehr

523

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Reporting Results

- Headline: “Men had higher IQ than women. Results were significant $p < .001$ ”
- ?→ “that’s very significant”
- ?→ “men are much smarter than women”
- P-value : statistically significant: Yes
- Effect Size : clinically significant: ? Unknown

524

Psychology 402 - Fall 2024 - Dr. Michael Diehr

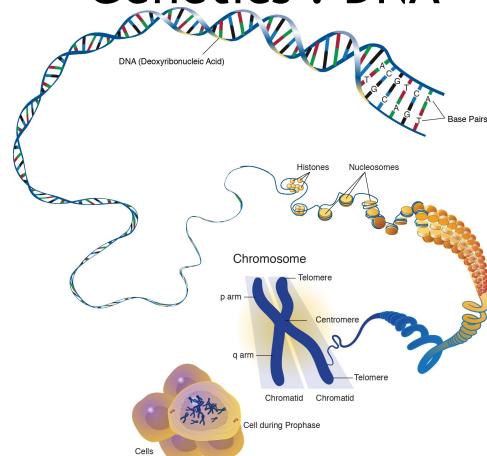
Review : Is race “real”?

- Pre-DNA theory
- Post-DNA theory

525

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Pre-DNA


- Gold, Silver, Brass & Iron -- Plato
- “There is a physical difference between the white and black races which I believe will for ever forbid the two races living together on terms of social and political equality.” -- Abraham Lincoln

526

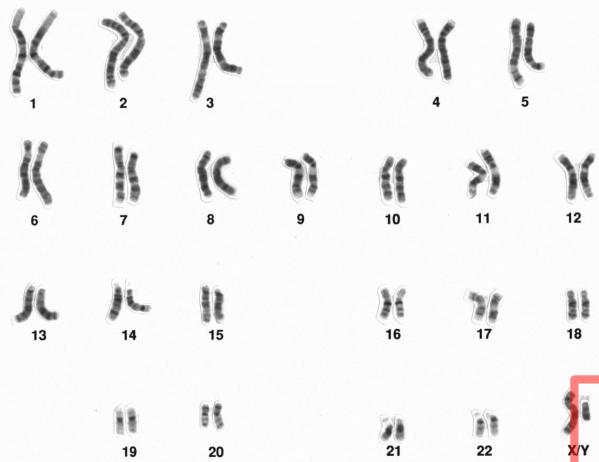
Psychology 402 - Fall 2024 - Dr. Michael Diehr

Genetics : DNA

528

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Genetics


529

- Human genome contains about 3 billion pairs of deoxyribonucleic acid (DNA)
- DNA is Transcribed into RNA
- RNA is Translated into Proteins
- Proteins
 - serve as structural components
 - function as enzymes to catalyze biochemical reactions
- Human DNA is grouped into 46 chromosomes
 - 23 pairs, one of each pair comes from each parent
 - 22 pairs in both males and females (autosomes)
 - 1 pair determines sex: either “XX” (females) or “XY” (males)

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Humans: 46 Chromosomes - 23 pairs

531

Michael Diehr

Gene

532

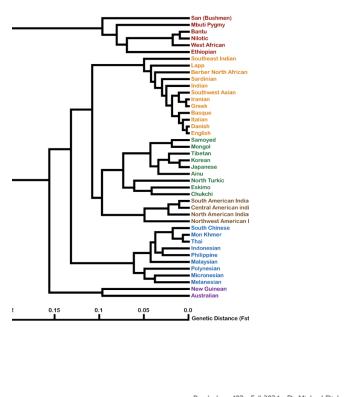
- DNA is subdivided into Chromosomes
- Chromosomes are subdivided into Genes
- Gene is a functional unit of DNA
- makes one thing (single protein or RNA)

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Genetics : Species Differences

533

organism	estimated size (base pairs)	# genes	gene size	# chromosomes
Homo sapiens (human)	3.2 billion	~25,000	1 gene per 100,000 bases	46
Mus musculus (mouse)	2.6 billion	~25,000	1 gene per 100,000 bases	40
Drosophila melanogaster (fruit fly)	137 million	13,000	1 gene per 9,000 bases	8
Arabidopsis thaliana (plant)	100 million	25,000	1 gene per 4000 bases	10
Caenorhabditis elegans (roundworm)	97 million	19,000	1 gene per 5000 bases	12
Saccharomyces cerevisiae (yeast)	12.1 million	6000	1 gene per 2000 bases	32
Escherichia coli (bacteria)	4.6 million	3200	1 gene per 1400 bases	1
H. influenzae (bacteria)	1.8 million	1700	1 gene per 1000 bases	1


Psychology 402 - Fall 2024 - Dr. Michael Diehr

Genetic Differences

- Sub-Saharan African
- Indo-European
- East Asian
- Native American
- South Asian
- Aboriginal

Fst = % of subpopulation variance

535

Psychology 402 - Fall 2024 - Dr. Michael Diehr

DNA Variation

- variation between individuals : 3mbp / person
- variation within groups : 85%
- variation between groups: 15%
 - 5% - within *population groups*
 - 10% - between *population groups*
- Note: skin color is one of the few traits where the pattern is reversed*

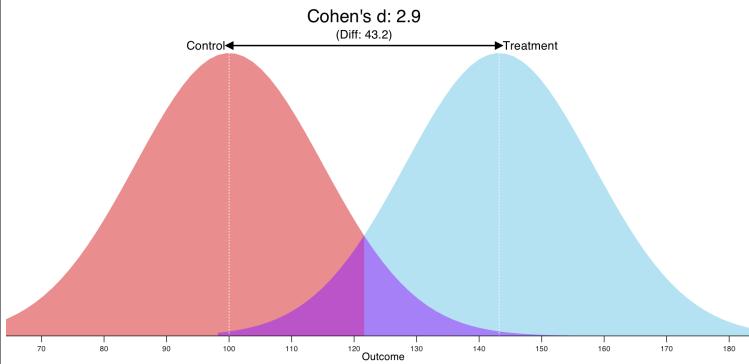
538

Psychology 402 - Fall 2024 - Dr. Michael Diehr

DNA Differences

- Identical Twins
 - 0.0%
- Human vs. Human
 - 0.1%
- Humans vs Gorillas
 - 1.6%
- Humans vs Chimps:
 - 4.0%
- Humans vs. Cats
 - 10.0%

Psychology 402 - Fall 2024 - Dr. Michael Diehr

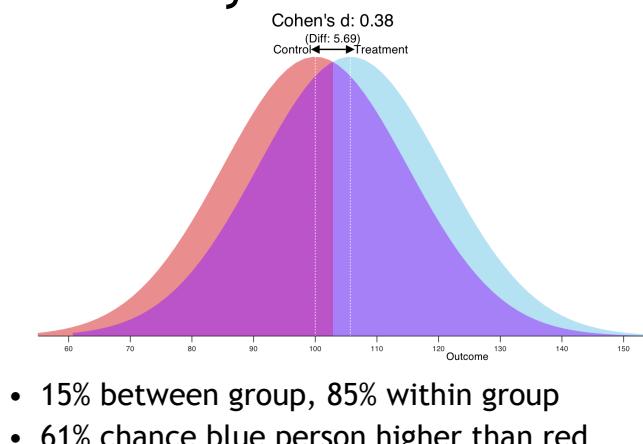

Post-DNA theory

- Variance
 - variation between individuals
 - aka variation *within races population groups*
 - variation *between population groups*

542

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Skin Color

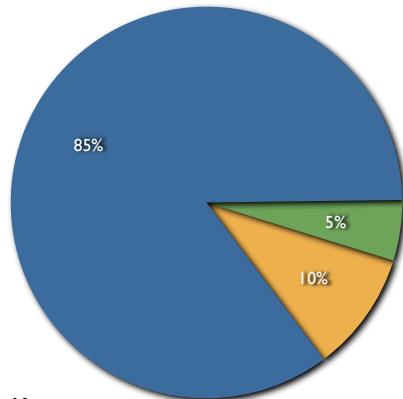


- 85% between group, 15% within group
- 98% probability blue person higher than red

543

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Many other traits

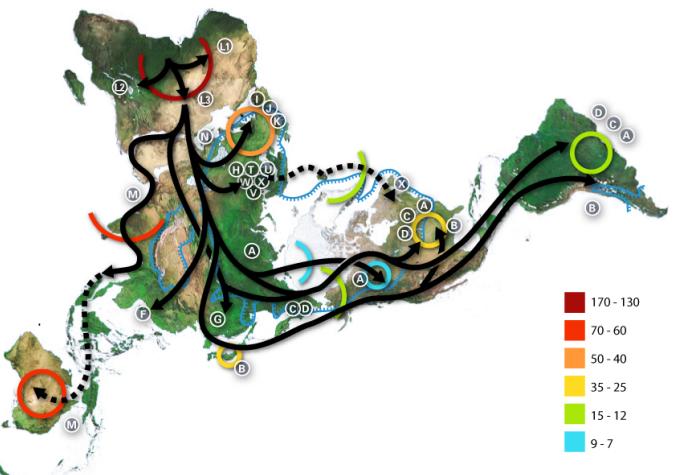

- 15% between group, 85% within group
- 61% chance blue person higher than red

544

Psychology 402 - Fall 2024 - Dr. Michael Diehr

Variance: Genetic Variation

- Within local populations
- Within "race"
- Between "race"


For example:

- 85% within Japanese
- 5% between Japanese & Korean
- 10% between Asian and Caucasian

546

Psychology 402 - Fall 2024 - Dr. Michael Dohr

Prehistorical Migration

