

Ch. 2 - Measurement & Stats

- [2-day version]

131

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Copyright © 2024 Michael Diehr
All Rights Reserved
For use only by students enrolled
in my sections of Psyc 402
through the end of the semester.
May not be posted, shared or uploaded
online without permission.

132

Psychology 402 - Spring 2024 - Dr. Michael Diehr

$$S = \sqrt{\frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N - 1}}$$

134

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Measurement & Stats

- Day 1
 - Measurement Scales
 - Why numbers?
 - Distribution & Graphs : Histogram
 - Central Tendency
 - Mean, SoR, SSR, Variance, Standard Deviation
 - Start Exercise 1
- Day 2
 - Population vs. Sample
 - Precision vs. Accuracy
 - Logic and Logical Fallacies
 - Percentile Rank, Norms
 - Z-score exercise (in class)

135

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Measurement Scales

- Nominal
- Ordinal
- Interval
- Ratio

136

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Nominal Scale

- Nominal: Name or ID only
 - red, blue, green....
 - john, tony, fred...
 - Sci2-243, Sci2-245...
- does not signify Ordering, Ranking, or More/Less
- Gotcha: even if used with Numbers it may be still a Nominal.
- Example: colors, names, room numbers, ID numbers

137

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Ordinal Scale

- Ordinal : ordering
- first, second, third....
1, 2, 3...
A, B, C...
- signifies Order, but can't assume distance between items is the same, e.g. the difference between an A and a B may be much different than a B and a C
- Example: Class Rank, Assignment Grade, Product Ratings

138

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Interval Scale

- Interval: specifies orders AND inter-item distance
 - -3, -2, -1, 0, 1, 2, 3.... 100, 105, 115
 - the difference between two numbers IS the same, e.g. 100 to 105 should be the same amount as 105 to 110
- Does NOT have an absolute zero.
- Example: temperature in Degrees Farenheit

139

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Ratio Scale

- Ratio: specifies orders AND inter-item distance and has absolute zero
- 0, 1, 2, 3.... 100, 105, 115
- the difference between two numbers IS the same, e.g. 100 to 105 should be the same amount as 105 to 110
- Does have an absolute zero.
- Example: temperature in Degrees Kelvin

140

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Measurement Scales

	Magnitude	Equal Intervals	Absolute Zero
Nominal			
Ordinal	✓		
Interval	✓	✓	
Ratio	✓	✓	✓

141

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Scales: Practical Info

- Nominal Scale: common
 - common stats: Count, Frequency, Mode
- Ordinal Scale: less common
 - stats: specialized “nonparametric” techniques required
- Ratio and Interval: common
 - Often can be treated identically with same statistical techniques

142

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Basic Statistics

- Why use numbers?
- Pros:
 - convenient, succinct
 - universal
 - well-defined, repeatable
- Cons:
 - precision vs. accuracy
 - numerical fallacy

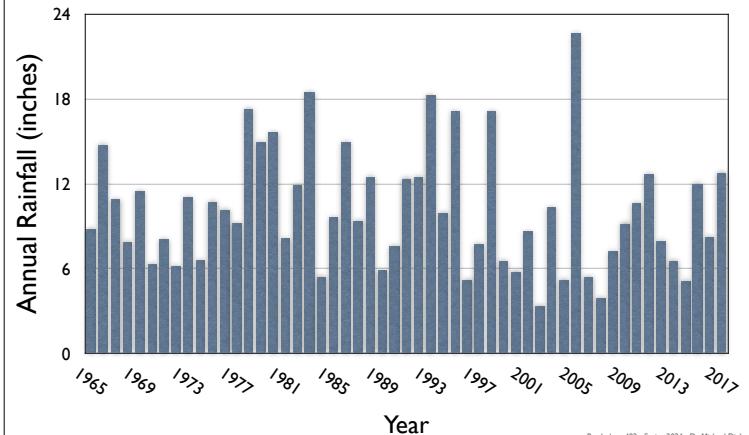
143

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Tabular Data

Table 1:

San Diego Annual Rainfall (in Inches) by Year


Year	Rainfall (inches)
1965	8.81
1966	14.76
1967	10.86
1968	7.86
1969	11.48

Psychology 402 - Spring 2024 - Dr. Michael Diehr

144

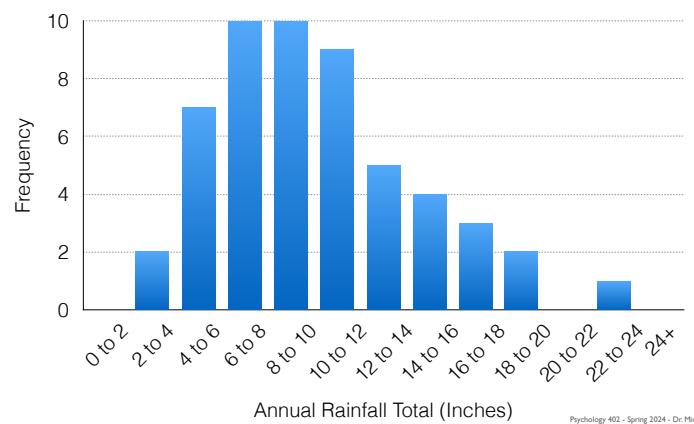
Data Distributions

San Diego Annual Rainfall (1965-2017)

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Histogram

- Frequency Distribution
- Invented by Karl Pearson
- Shows data from *one* variable only
- Data is (often) collected into groups (“bins”)


146

Psychology 402 - Spring 2024 - Dr. Michael Diehr

148

Histogram

Figure 1
Frequency Distribution of San Diego Annual Rainfall

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Describing Distributions

- Why? Large lists are inconvenient. Reduce many data points to a few numbers.
- Issue: Reducing data (“Degrees of freedom”) : throws away data.
- We are modeling our data using a simplification.
- “All models are wrong, some models are useful”
- Simple vs. Simplistic?

149

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Descriptive Statistics

- Statistical Assumptions: When these are not met, weird things happen.
- Joe Smith is 6 feet tall, his child is 1 foot tall. Thus, the average height in the Smith household is 3.5 feet.
- If you are sitting in bar, and Bill Gates walks in, suddenly everyone in the bar is (on average) a multi-millionaire.

150

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Alternative Notations

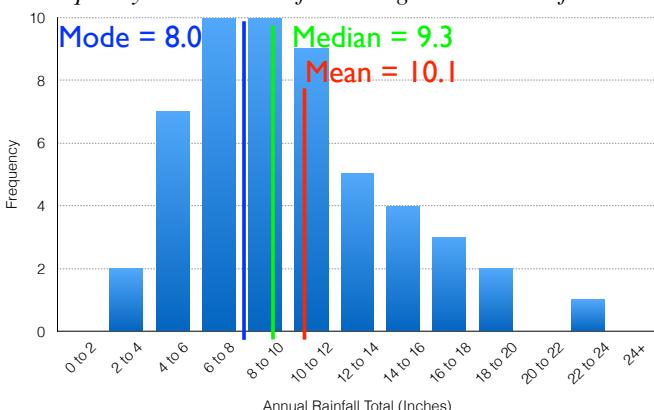
- Square Root (x) $\text{sqrt}(X)$ \sqrt{X} $\sqrt[2]{X}$
- X-Squared X^2 X^{**2} X^2
- Sum(x) $x_1+x_2+x_3\dots$ $\sum_{i=1}^N x_i$ $\sum x$
- Mean M $\frac{\sum x}{N}$ \bar{X}

151

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Central Tendencies

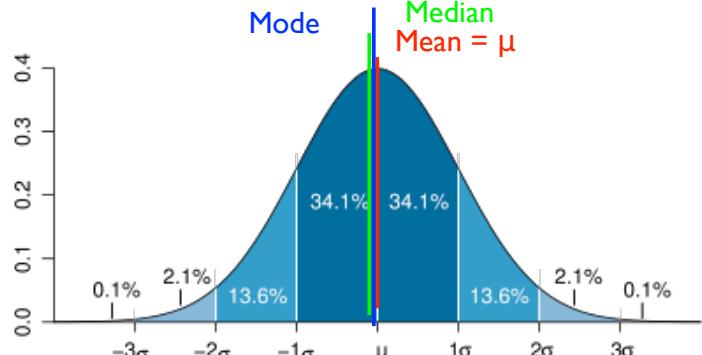
- Values tend to cluster around a point.
- **Mean** : most common statistic, commonly referred to as the “average”. Formula $\Sigma X / N$
- **Mode**: the most common value in a set
 - rare to use in statistics
- **Median**: the middle-most value in a set
 - the value at which half are above and half are below. Aka the 50th percentile.


152

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Histogram

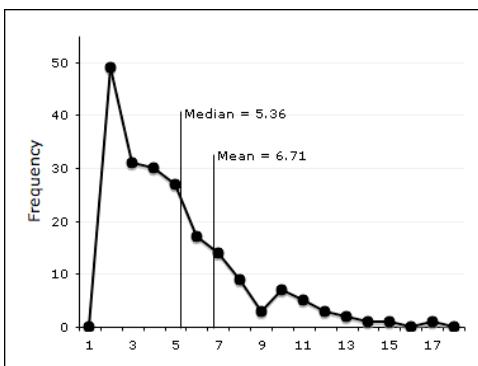
Figure 1


Frequency Distribution of San Diego Annual Rainfall

Psychology 402 - Spring 2024 - Dr. Michael Diehr

153

Normal Distribution

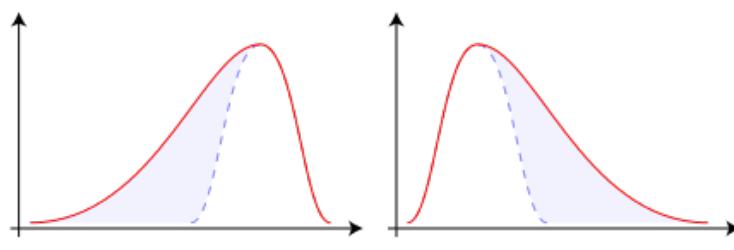


In a normal distribution, the mean, mode, and median are all the same

154

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Skewed Distribution



In a skewed distribution, the mean, mode, and median are all often different

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Skew

- negative skew : fatter tail on the left
- positive skew : fatter tail on the right

156

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Measures of Central Tendency 1

	Description	Algorithm	Formula
Mean	the "average"	sum values, divide by N	$\bar{x} = \frac{\sum_{i=1}^N x_i}{N}$
Median	the "middle-most value"	sort values, find middle value	50th percentile
Mode	the "most common" value	find most frequent value	...

157

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Measures of Central Tendency 2

Behavior:	Normal Distribution	Skewed Distribution
Mean	same	overly affected by outliers
Median	same	fairly resistant to outliers
Mode	same	resistant to outliers

158

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Measures of Dispersion 1

- Compare each measured value to the average
- "for a typical value, how far away is it from the mean"
- "Difference score" or "residual" can be calculated as the difference between the actual score and the mean. In other words, $d_i = x_i - \bar{X}$
- Take the average (mean) of the difference scores.
- Average difference score = $\text{Sum}(d) / N$

160

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Average Difference Score

	Score (x)	Mean (\bar{X})	Difference $d = (x - \bar{X})$
	2	6	-4
	3	6	-3
	9	6	3
	11	6	5
	14	6	8
	1	6	-5
	6	6	0
	4	6	-2
	5	6	-1
	5	6	-1
Sum	60	60	0
Mean	6	6	0

161

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Sum of Residuals

- Given N samples of x : $x_1, x_2, x_3 \dots x_N$
- mean of x $\bar{x} = \frac{\sum_{i=1}^N x_i}{N}$
- residuals $d_i = x_i - \bar{x}$
- Sum of Residuals is always zero

$$\sum_{i=1}^N d_i = 0$$

162

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Sum of Residuals

- The “average difference score” score will *always* equal zero
- Solution:
 - Square the residuals *before* adding: removes the negative values.
 - “SSR” or Sum of Squared Residuals

163

Psychology 402 - Spring 2024 - Dr. Michael Diehr

SSR: Sum of Squared Residuals¹⁶⁴

- Given N samples of X: $x_1, x_2, x_3 \dots x_N$
- mean of x $\bar{x} = \frac{\sum_{i=1}^N x_i}{N}$
- residuals $d_i = x_i - \bar{x}$
- Sum of Squared Residuals (SSR)

$$SSR = \sum_{i=1}^N (d_i)^2$$

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Problems with SSR

- SSR depends on units of measurement:
 - a meter is 1000 millimeters, so SSR will be $1000^2 \times 1000 =$ one million times higher when using meters vs. millimeters
- SSR depends on N (# of samples)
 - Doubling N will cause SSR to double (roughly)
- Therefore, SSR is hard to understand:
 - is SSR = 0.00342 high or low?
 - is SSR = 2343249 high or low?

165

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Remove the influence of N

- The Sum of a set of values depends on the number (N) of values:
- $\sum_{i=1}^N x_i$
- Take the average (mean)
 - this divides by N
 - removes the influence of N

166

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Variance

- Problem: SSR depends on N
- Solution: Take the average of SSR to remove the influence of N
- The average of the squared residuals is called Variance (S^2)

167

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Variance

- Variance = SSR/N
- Variance = mean of squared residuals

$$S^2 = \frac{\sum_{i=1}^N (d_i)^2}{N}$$

$$S^2 = \frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N}$$

168

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Problems with Variance

- Units are squared:
- measuring height in meters? variance is meters²
- measuring # of cupcakes eaten? variance is (# of cupcakes eaten)²
- Won't someone rid me of these meddlesome squared units?

169

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Standard Deviation

- Improving on Variance:
- The square root of Variance (S^2) gives S , which is called “Standard Deviation”.
- Also abbreviated SD, StdDev or σ (Greek letter sigma), or sometimes just “S”
- SD : easier to understand because it's in the same units as your measurement.
- SD is a unique property of the normal distribution -- given a mean and a SD you have uniquely specified the distribution

170

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Standard Deviation

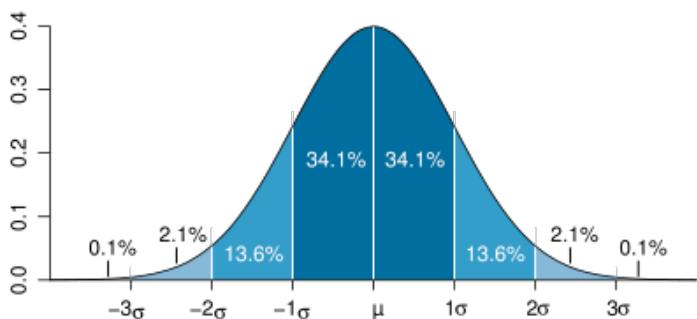
- SD = Square root of Variance

$$S = \sqrt{\frac{\sum_{i=1}^N (d_i)^2}{N}}$$

$$S = \sqrt{\frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N}}$$

171

Psychology 402 - Spring 2024 - Dr. Michael Diehr


Standard Deviation

- can be thought of as the “average deviation”
- (but it's not literally average deviation, since we showed earlier the average difference score is always Zero)
- Technically:
 - (in a normal distribution) scores will be within plus or minus 1 SD about 68% of the time

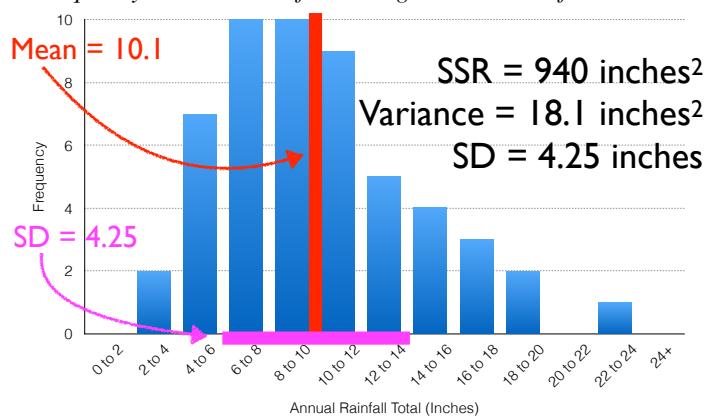
172

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Normal Distribution

In a normal distribution, about 68.2% of values fall within ± 1 SD

173


Psychology 402 - Spring 2024 - Dr. Michael Diehr

SSR, Variance and SD

174

Figure 1

Frequency Distribution of San Diego Annual Rainfall

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Central Limit Theorem

- No matter the shape of the Population distribution, if you take enough (*) samples of the mean, the distribution of your samples of the mean will have a Normal distribution
- Central Limit Theorem Exercise (Javascript)
- This fact makes our life easy: Many statistics assume a normal distribution. The CLT provides us a normal distribution in most cases, even when the population data is skewed

175

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Exercise: normal distribution

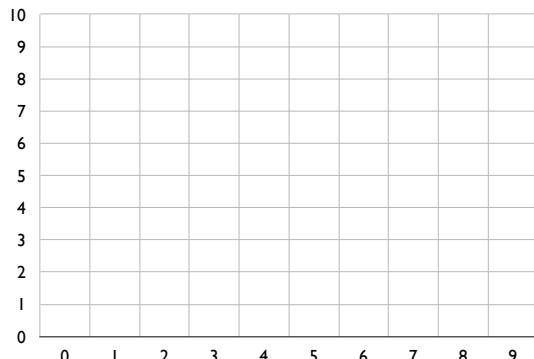
- Roll one 10-sided die 10 times and record the results
- Prediction
 - Your Distribution: Uniform (flat)
 - Mean : 4.5
 - Class Distribution: ???
- hint: What is N? # die rolls, # of students?
- List and Graph results
- Does the distribution look normal?
 - if so, why?

176

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Exercise 1: Die Rolls

Trial #	X_i	M	$d = (x_i - M)$	(residual) 2
1	2	3.5	-1.5	2.25
2	4	3.5	0.5	0.25
3	6	3.5	2.5	6.25
4	2	3.5	-1.5	2.25
Sum:	14			


N # of rolls	$M = \bar{X}$		Σ Residuals	Σ (residual) 2	$\frac{\Sigma (\text{residual}^2)}{N-1}$	$\sqrt{S^2}$
4	3.5		0.0	11.0	3.67	1.92

177

Psychology 402 - Spring 2024 - Dr. Michael Diehr

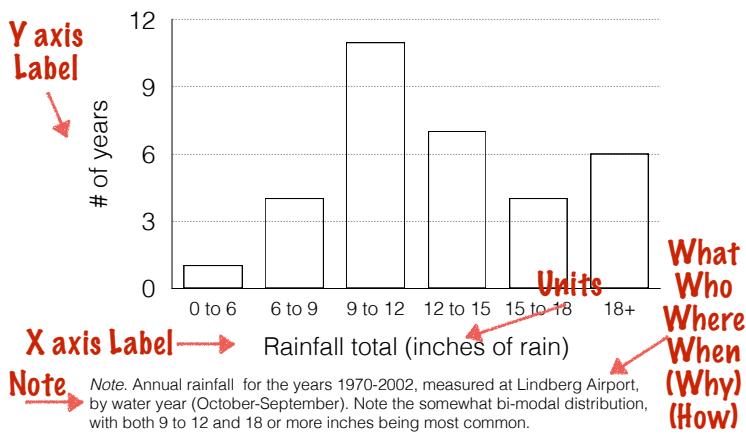
Title:

Figure 1
Blah de Blah Blah Blah

Y axis label:

X axis label:

Note:


178

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Example of APA-7 style Histogram

Figure 1

Frequency Distribution of Annual Rainfall in San Diego

179

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Exercise: normal distribution 2

- Compute Mean (\bar{X}) - is it near 4.5?
- Compute residuals
- Compute sum of residuals -- do they add to zero?
- Compute squared residuals
- Compute Sum of squared residuals (SSR)
- Divide SSR by $(N-1)$ - this is Variance or (S^2)
- Take square root of variance - this is S or Standard Deviation
- For this exercise, SD should be near 2.8

180

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Ch. 2 - Part 2

185

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Review

191

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Population vs. Sample

- Ideally, measure *everyone* to get the exact value (*Population parameter*)
- Practically, this is impossible.
- Take samples instead, and calculate the *Sample statistic*.
- The “Law of Large Numbers”, “Sampling Theory”, “Central Limit Theorem” makes life easier
- [Central Limit Theorem Exercise \(Javascript\)](#)
- Some formulas differ for *Population* vs. *Sample* (divide by N or divide by N-1 ?)

199

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Population v. Sample

	Population	Sample
Definition	the entire set of items	the actual subset you measured
Descriptives	“Parameters”	“Statistics”
Symbols	Greek	Roman
Mean	μ	\bar{x}
Std. Deviation	σ	S
Variance	σ^2	S^2
Divide by	N	N-1

200

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Law of Large Numbers

- If you take enough* samples, the sample mean approaches the population mean.
- Example: a coin has two sides. If heads=1 and tails = 0, then the average expected result is exactly 50% Heads (0.5) in the long run.
- However, if you flip a coin just a few times, getting exactly 0.5 is not likely.
- The LLN states that you will if you take enough samples.

* what is “enough”? Rule of thumb : 100.

201

Psychology 402 - Spring 2024 - Dr. Michael Diehr

LLN Demonstration

- Law of Large Numbers
- [Demonstration with Coin Flips](#)

202

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Logical Fallacies

203

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Logical Arguments

- Logical arguments or inferences generally have several components:
 - Premises
 - Conclusions
- Example:
 - Premise: All English people are musicians
 - Premise: John Lennon was English
 - Conclusion: John Lennon was a musician

204

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Logical Arguments 2

- An Inference can be either Valid or Invalid -- this refers to the Structure of the argument (not the Facts themselves)
 - All A are B
 - All C are A
 - All C are B
- A Valid inference can still come to a false conclusion, and vice-versa

205

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Logical Fallacies

- A Logical Fallacy generally means that your inference is Invalid to begin with. In addition, your facts may or may not be true, but the flaw in reasoning has occurred before you even apply facts.
- Example: Affirming the consequent
 - If P, then Q
 - Q is true
 - Therefore P
- bank owners are rich
- Bill Gates is rich
- Bill Gates owns a bank

206

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Biased Sample

- Every individual x that we have seen from sample X has characteristic Z
Therefore ALL X have characteristic Z
- Every student I talk to in this class is interested in Psychology
Therefore, ALL students are interested in Psychology

208

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Nominal and Numeric

- Nominal Fallacy: The tendency to believe that something has a name or identification, it exists or has special meaning.
“I am sleepy” vs. “I am suffering from activity-induced-rest-reduction-performance-impairment syndrome”
- Numerical Fallacy: belief that something has been measured and assigned a number, it actually exists. “I’m really sad” vs. “I scored a 32 on the Beck Depression Inventory”

209

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Reification Fallacy

- To Reify - to make something more concrete or real
- Examples:
 - “An A student”
 - “High IQ”
 - “Top of the class”
 - “A F Grade”

210

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Ranking Fallacy

- Reducing a complex phenomenon (e.g. intelligence), giving it a single number (reification) and then ordering based on that number
- Examples:
 - A IQ of 93 is better than an IQ of 90
 - An income of \$50,000 is better than \$45,000

211

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Correlation = Causation

212

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Other Fallacies

- Begging the question -- circular argument
- Post hoc ergo propter hoc (*after this, therefore because of this*)
- Appeal to Authority
- False Dilemma (Black & White thinking)

214

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Significant Figures

- “digits of precision” or “sig. fig.”
- 1.3 has 2 sig. fig.
- 1.3455 has 5 sig. fig.
- More significant figures → more precision

215

Psychology 402 - Spring 2024 - Dr. Michael Diehr

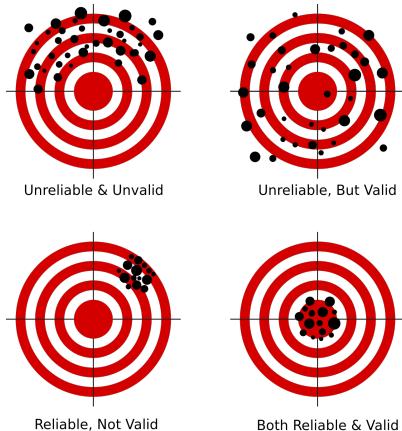
Precision vs. Accuracy

- Precision : the level of detail a measurement is made with, often specified with an error-range
 - “about 6 feet plus or minus 1 foot” vs. “6 foot 11 inches plus or minus 1 inch”
- Accuracy: how close the measured value is to the actual value, does it “hit the target”
- Think arrow vs. shotgun
- A number can be precise and accurate, precise but inaccurate, or accurate but imprecise.

216

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Precision Fallacy


- A number that is *precise* may seem to be *accurate* when it is not
- A measurement that is *reliable* may seem to have *validity* when it does not

217

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Precision vs. Accuracy

- Target shooting analogy
- Similar to Reliability vs. Validity

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Fallacies re: Probability

- Classical
- Gambler's Fallacy
- Bayesian Reasoning

219

Psychology 402 - Spring 2024 - Dr. Michael Diehr

9 Heads in a row

- You are flipping a coin, and get 9 heads in a row
H H H H H H H H H
- What is the % chance the next flip will be a H ?
- Three common answers:
 - 50/50
 - more likely Heads
 - more likely Tails

220

Psychology 402 - Spring 2024 - Dr. Michael Diehr

9 Heads: Classical Inference

- Coin flips are independent 50/50 events, therefore 50% : Logical/Statistical
- This is the *correct* answer for a *fair coin*

221

Psychology 402 - Spring 2024 - Dr. Michael Diehr

9 Heads: Gambler's Fallacy

- Coin flips are independent 50/50 events, but we just saw 9/10 heads, therefore a Tail is "due"
- This is the "Gambler's Fallacy" and one reason Casinos make tons of money. The reasoning is faulty.
- Note: when dealing with draws w/o replacement, this logic is *correct*. For example, a single-card blackjack deck -- if no face cards have come up after 30 cards, then face cards are due

222

Psychology 402 - Spring 2024 - Dr. Michael Diehr

9 Heads: Bayesian Statistics

- Coin flips are supposed to be 50/50 events, but we just saw 9/10 heads, therefore the data is telling us that perhaps this is not a fair coin.
- Bayes' theorem suggests you evaluate the prior probabilities in determining future behavior
- In this case, you'd conclude that Head is more likely on the next flip

223

Psychology 402 - Spring 2024 - Dr. Michael Diehr

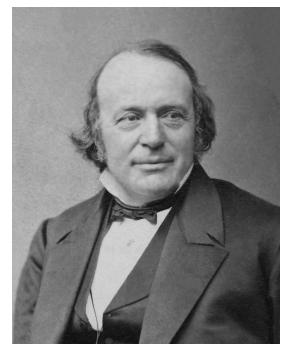
224

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Review - History

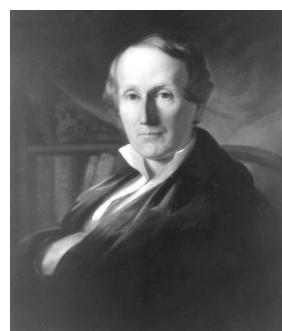
- Themes
 - 18th-19th century
 - 19th-20th century
- Theories of Human Development
 - Creationism
 - Polygenism
 - Evolution
 - Genetics
- Controversy
 - IQ testing of various groups

225


Psychology 402 - Spring 2024 - Dr. Michael Diehr

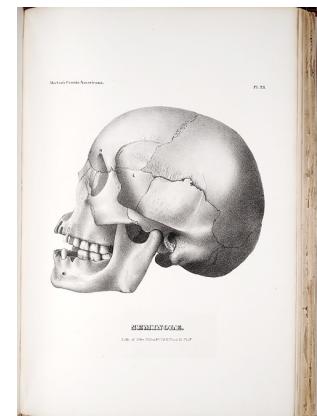
226

Psychology 402 - Spring 2024 - Dr. Michael Diehr


Louis Agassiz

- Swiss-born, European-trained biologist / geologist
- Came to Harvard in 1847
- Creationist -> Polygenist
- Taxonomist
- Resisted Darwin's theory of Evolution
- d. 1873

Review: Samuel George Morton


- Theory of Polygenism
- Humans are composed of different species, created by god
- Craniometry
- Biological Determinism
- “Scientific Racism”
- The “American School”
- d. 1851

227

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Crania Americana

Samuel George Morton
1839

Psychology 402 - Spring 2024 - Dr. Michael Diehr

229

Morton's Data as printed

Race	N	Cranial Volume Mean
Caucasian	52	87
Mongolian	10	83
American	144	82
Malay	18	81
Ethiopian	29	78

232

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Data, corrected

Race	Mean (Morton)	Mean (corrected)
Caucasian	87	87
Mongolian	83	87
American	82	86
Malay	81	85
Ethiopian	78	83

233

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Seed vs. Shot

Race	Difference (seed - shot)
Caucasian	1.8
Mongolian	n/a
American	2.2
Malay	n/a
Ethiopian	5.4

235

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Morton's errors

- Fundamental arithmetic errors
- Data selection errors
- Failure to measure or control for external variables (biological sex, body size, etc.)
- Basic Statistical errors (averaging measurements from unequal size subgroups)
- The racist thumb press?
- Is he a liar? Conscious or subconscious?

236

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Morton's Model

Internal vs. External Validity

- Internal Validity - how did it work?
 - were the methods good
 - did the IV cause the DV
- External Validity - what does it mean?
 - does skull size indicate IQ?
 - does IQ indicate personal worth?

237

Psychology 402 - Spring 2024 - Dr. Michael Diehr

238

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Comparing Scores

- Compare a single score to the population
- One way: difference scores

Comparing Scores

- Desire a system independent of the raw score units (just like letter grades)
- Two methods:
 - Ranks & Percentile Ranks...
 - Standard Scores...

- Problem: Is a difference of “3” big or little? On a 100 point test it’s not very large, but on a 10 point test it’s the difference between an A and a C

239

Psychology 402 - Spring 2024 - Dr. Michael Diehr

240

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Ranks, Percentiles

- Given a distribution of scores, and a single score
- **Rank** = the item # of the single score when sorted high to low
- **Percentile Rank** = the % of scores which are lower than the given score
- **Percentile** = the score at which a given percent of scores are below a given score
- Note: “**Percentile**” often used informally to mean “**Percentile Rank**”

241

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Rank & Percentile

- Coronavirus Deaths
- Total deaths, per million people, as of September 2020
- Sort low to high

Country	Score
Mozambique	0.9
China	3.0
Ethiopia	8.0
Japan	11.0
Zambia	16.0
Colombia	424.0
France	471.0
Sweden	577.0
USA	584.0
Bolivia	599.0

243

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Rank & Percentile

- Determine Rank #

Country	Score	Rank
Mozambique	0.9	1
China	3.0	2
Ethiopia	8.0	3
Japan	11.0	4
Zambia	16.0	5
Colombia	424.0	6
France	471.0	7
Sweden	577.0	8
USA	584.0	9
Bolivia	599.0	10

244

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Percentile Rank

Percentile Rank = # of cases with worse value divided by # of cases

e.g. France is 7th of 10 (it has 3 cases with worse values)
 $3 / 10 = 30\%$ percentile rank

Country	Score	Rank	%ile Rank
Mozambique	0.9	1	90
China	3.0	2	80
Ethiopia	8.0	3	70
Japan	11.0	4	60
Zambia	16.0	5	50
Colombia	424.0	6	40
France	471.0	7	30
Sweden	577.0	8	20
USA	584.0	9	10
Bolivia	599.0	10	0

245

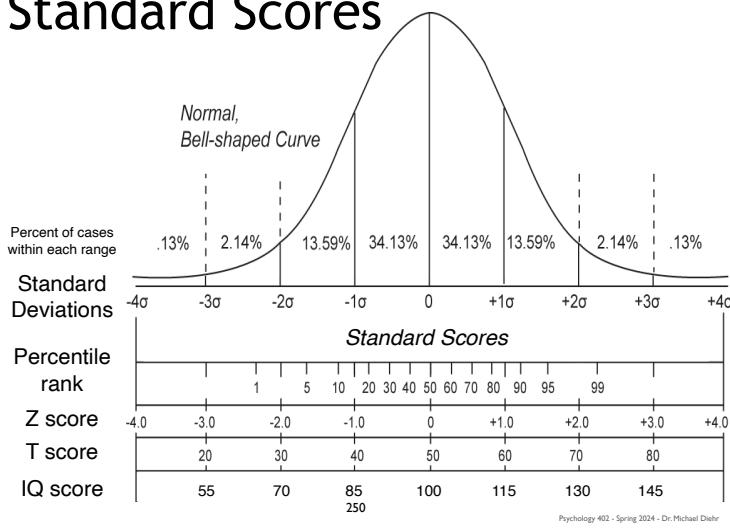
Psychology 402 - Spring 2024 - Dr. Michael Diehr

Standard Scores 2

- Use the mean and standard deviation as points of reference.
- Standard score : distance from the mean, scaled by standard deviation
- Not affected by raw score units.
- Different standard scores mean the same thing, but are expressed differently.
 - just like how 1.0 and 100% mean the same thing
- Unfortunately, there are several different Standard Score systems!

247

Psychology 402 - Spring 2024 - Dr. Michael Diehr


Z-score

- A Z score is the # of standard deviations above (+) or below (-) the mean of a single measurement.
- Algorithm: given a single score (X_i), subtract the mean M , divide by the standard deviation S
- Formula
 - $Z = (X - M) / SD$

249

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Standard Scores

Standard Scores: Z, T, IQ

	Z scores	T scores	IQ scores
Mean	0	50	100
SD	1	10	15
Example: top 3%			
Example: top 1%			
Formula: from Z Score	Z	$(Z \cdot 10) + 50$	$(Z \cdot 15) + 100$

251

Psychology 402 - Spring 2024 - Dr. Michael Diehr

z-Score $(X - \bar{X})/S$	T-Score $10z + 50$	Wechsler IQ $(15z + 100)$	Percentile Rank
3.0	80	145	99.9
2.9	79	144	99.8
2.8	78	142	99.7
2.7	77	141	99.6
2.6	76	139	99.5
2.5	75	138	99.4
2.4	74	136	99.2
2.3	73	135	98.9
2.2	72	133	98.6
2.1	71	132	98.2
2.0	70	130	97.7
1.9	69	129	97.1

252

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Norms 1

- Standard Scores provide us with a way of describing how a particular score relates to others in the population.
- Describing how an individual score relates to the population, which we assume are “normal”.
- Terms “normative data” and “norms”
- Key questions: What is the normative group? What features or factors of the group may affect scores?

253

Psychology 402 - Spring 2024 - Dr. Michael Diehr

Z-score Exercise

- This is for practice, not graded for points
- PDF is on class website