

## Chapter 10 : Neocortical Function

Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

1

## Case Report : Hemispherectomy

- AR, an 11 year old boy began developing seizures
  - right-sided weakness, difficulty talking (dysphasia)
- Over next six years, hospitalized many times
  - Right handed -> left handed
  - by age 15, IQ dropped 30 points (from 100 to 70)
  - by age 17, he was not testable due to emotional & language problems
- Dx : Rasmussen's Encephalitis
- Tx : removal of most of left hemisphere


Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

2

## Case Report : Hemispherectomy

- Note: image is from another patient with a Right-hemispherectomy



Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

3

## Case Report : Hemispherectomy

- Recover post hemispherectomy
- 10 years later
  - oral language skills : vastly improved (to average)
  - unable to read or write
  - motor skills : improved
    - could walk (with limp)
    - could raise right arm to shoulder level and grasp objects with right hand

Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

4

## How did AR recover?

- Levels of Function
  - Subcortical areas manage, direct, and control cortical areas
- Brain Plasticity
  - brain can respond to injury / damage / dysfunction
  - in AR's case: dysfunctional LH blocking language functions in RH. With LH removed, RH could work better and grow back some functions.

Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

5

## Levels of Function

| Level                              | Function                                                                                                                                                        |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cortex                             | <b>Control and Intention:</b> Sequences of voluntary movements. Cognitive maps, relationships between objects, emotional values, motivation, long term planning |
| Basal Ganglia                      | <b>Self Maintenance:</b> Coordinates voluntary and automatic movements for self-preservation (simple eating, drinking, sex)                                     |
| Diencephalon hypothalamus thalamus | <b>Affect and Motivation:</b> Voluntary movements, but without purpose. Integrated emotional behavior, but mis-directed. Thermoregulation.                      |
| Midbrain                           | <b>Spontaneous Movement:</b> Simple motor responses to visual/auditory stimuli. Automatic behavior (grooming). Stand, walk, turn, jump in response to stimuli.  |
| Hindbrain                          | <b>Postural Support:</b> hiss, bite, growl, chew, lick in response to stimuli. Standing, postural reflexes, sleepwalking.                                       |
| Spinal cord                        | <b>Reflexes:</b> stretch, withdraw, scratch in response to stimuli                                                                                              |

Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

6

## Decorticate Rats

- Decorticate rats behave in many ways normally
  - eat, drink
  - can run simple mazes
- Untrained observers have difficulty telling them apart from a rat with a cortex
- Decorticate rats
  - don't build nests
  - do not hoard food
  - can't do skilled movements with tongue & mouth
  - can do simple learning

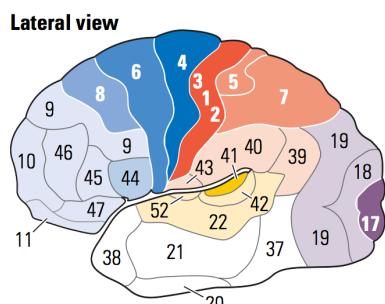
Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

7

## Cortex - what is it good for?

- Conclusions : Neocortex not necessary for basic survival
- Neocortex is a “new layer” evolutionarily developed
- Manages complex and new combinations of behavior


Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

8

## Cortical Mapping Ideas

- Broadmann's Map
- Primary/Secondary/ Tertiary
- Developmental
- Primordial zone
  - myelinates early : part of motor & somatosensory cortex
- Secondary zone (borders primordial zone)
  - myelinates next
- Tertiary zone (association)



Psychology 465 Human Neuropsychology Fall 2012

9

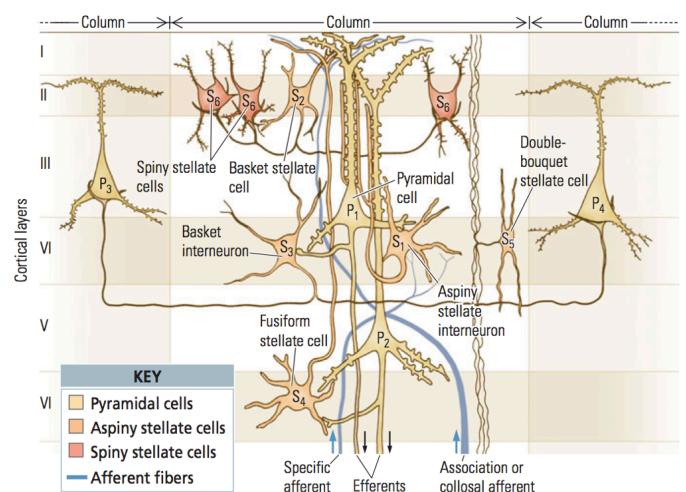
## Cortical Neuron Types

- Spiny
  - has dendritic spines
- Examples:
  - Pyramidal cells
    - pyramid-shaped
    - 75% of all neurons
    - efferent (project out of brain, e.g. motor neurons)
  - Stellate cells
    - star-shaped

Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

10

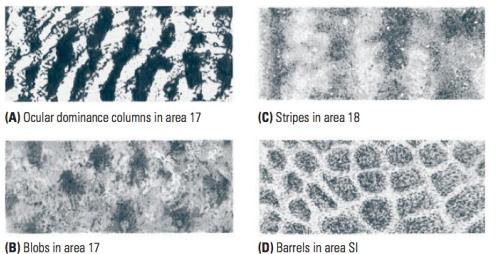

## Cortical Neuron Types

- Aspiny
  - no dendritic spines
  - Inhibitory, use GABA and also use other NTs
  - diverse shape & chemistry
  - Examples:
    - basket cell
- Columns:
  - cells in vertical arrangement mostly talk to each other

Psychology 465 Human Neuropsychology Fall 2012

11

## Cortical Columns




Saturday, September 22, 2012

12

## Cortical Columns, Spots & Stripes

- Cortical neurons function in narrow columns
- Up to 300 neurons in 1mm wide strip
- “Column” or “Module”
- How determined?
  - radioactive staining - inject tagged AA into eyeball
- Not widespread agreement on definition or function

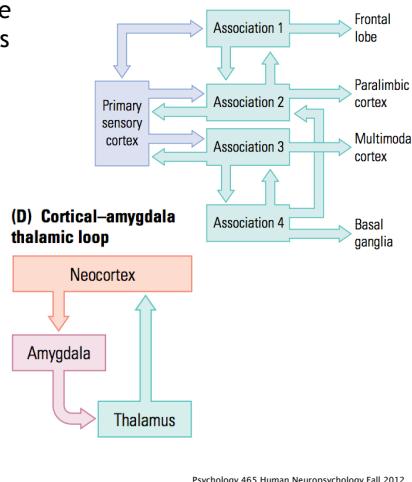


Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

13

## Representation & Mapping


- Early views
  - brain areas have mapping to specific topics
  - e.g. motor cortex maps to body muscles
  - sensory cortex maps to skin receptors
- Later research
  - found multiple maps in many parts of the brain
    - e.g. monkeys: approx 30 areas mapping to vision
  - found multimodal / polymodal areas
  - combining sensory / motor information
  - found maps are widely distributed / general (not as localized as thought)
- Conclusion:
  - # of maps --> amount of “intelligence” ?

Psychology 465 Human Neuropsychology Fall 2012

14

## Cortical Systems & Subcortical Loops

- Cortex connections can be divided into 5 major areas
- Subcortical connections form loops between subcortical and cortex (6 major ones discovered)



Saturday, September 22, 2012

15

## The Binding Problem

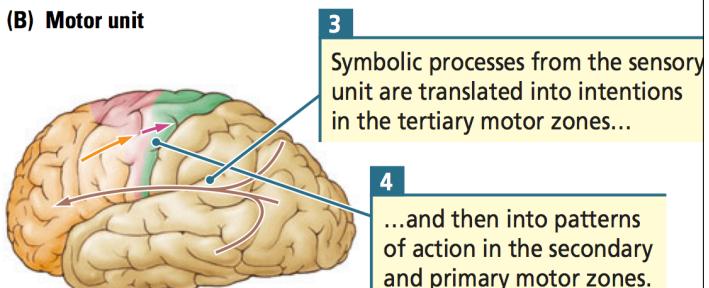
- How does the brain integrate sensory perception into a *gestalt* (a “whole”)
- Possible solutions
  - 1. A top-level cortical area binds them together
    - problem - this doesn't seem to exist
  - 2. All areas are interconnected and share information
    - problem - not all areas are connected
  - 3. Intracortical networks among subsets of regions
    - may actually be how the brain works?
    - called “integration”
- Still not really solved

Psychology 465 Human Neuropsychology Fall 2012

16

## A Hierarchical Model : Structure

- Alexander Luria’s model
- Cortex : two parts
  - posterior : sensory
  - anterior : motor
- Each part has 3 zones:
  - primary
  - secondary
  - tertiary (association)


Psychology 465 Human Neuropsychology Fall 2012

17

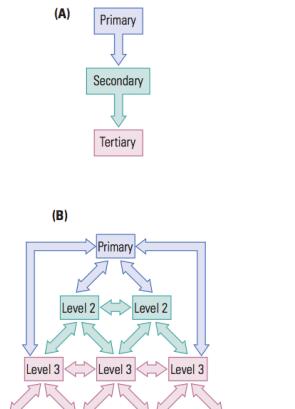
## A Hierarchical Model : Function

- Processing is serial:
  - posterior (1,2,3) --> anterior (3,2,1)

### (B) Motor unit



Saturday, September 22, 2012


Saturday, September 22, 2012

Psychology 465 Human Neuropsychology Fall 2012

18

## Luria's model : accurate?

- Problems
  - serial connections may not exist
  - subcortical connections bypass cortex
- Newer models:
  - still hierarchy, but some levels bypass each other
  - includes parallel processing.
- “Distributed Hierarchy”



Psychology 465 Human Neuropsychology Fall 2012

19

## Modern Distributed Hierarchical Models



Psychology 465 Human Neuropsychology Fall 2012

20

## Are Humans Special?

- Do Human brains have any unique properties?
- Biological, Psychological and Theological Question
- Human brains have
  - High density of neurons with fast conduction velocity
    - --> increased processing capability
  - Von Economo Neurons
    - large bipolar neurons in cingulate cortex (also seen in great apes, but to a lesser extent)
    - develop around age 4
      - might hold “theory of mind”?
      - defective in Autism?

Psychology 465 Human Neuropsychology Fall 2012

21

Saturday, September 22, 2012