

Week 2 : Brain Origins and Evolution

- KW Chapter 2
- Sacks Chapter 3

Psychology 465 - Human Neuropsychology - Spring 2017

111

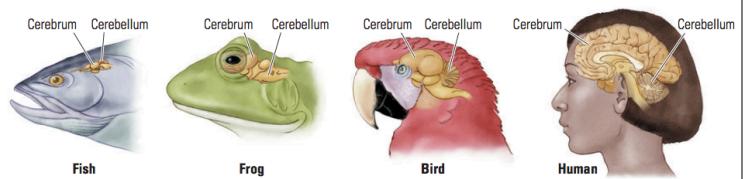
Issues re: Evolution

- Philosophical Issues
 - humans vs. animals - qualitative vs. quantitative difference?
- Scientific issues
 - conflicting & rare evidence
 - e.g. Neanderthals
- Religious issues
 - ancient texts
 - contrary teachings
 - literal vs. symbolic interpretation
 - “7 days” vs “4.5 billion years”
 - modern ideas

Psychology 465 - Human Neuropsychology - Spring 2017

113

Catholic Church’s “Evolution” on Evolution


- Catholic Church’s position on scientific evolution has changed over time. E.g. July 2004:
- “According to the widely accepted scientific account, the universe erupted 15 billion years ago in an explosion called the ‘Big Bang’ [...] In our own solar system and on earth (formed about 4.5 billion years ago), the conditions have been favorable to the emergence of life. While there is little consensus among scientists about how the origin of this first microscopic life is to be explained, there is general agreement among them that the first organism dwelt on this planet about 3.5-4 billion years ago. **Since it has been demonstrated that all living organisms on earth are genetically related, it is virtually certain that all living organisms have descended from this first organism. [...]”**

Psychology 465 - Human Neuropsychology - Spring 2017

114

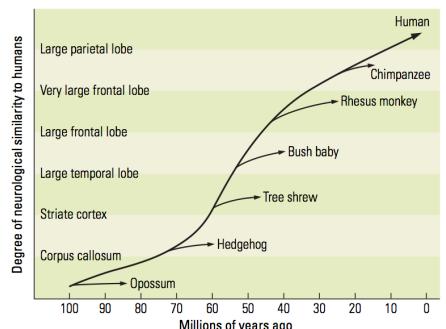
Brain Evolution

- General increase in brain size & complexity across species

Psychology 465 - Human Neuropsychology - Spring 2017

115

Why study animal brains?


- Understanding basic brain mechanisms
 - neurons, synapses, neural tracts & systems
 - genetic similarities are high
- Designing animal models
 - ethical issues with human research
- Evolutionary perspectives
 - similarities
 - differences in brain --> differences in behaviors?

Psychology 465 - Human Neuropsychology - Spring 2017

116

Quasi-Evolutionary Sequence

- Hypothetical sequence mimicking the evolutionary sequence
- Living descendants of extinct animals are used
- Brain/Behavior relationships inferred
- Example - Shrew: striate cortex allows to see branches & insects, hedgehog can't

Psychology 465 - Human Neuropsychology - Spring 2017

117

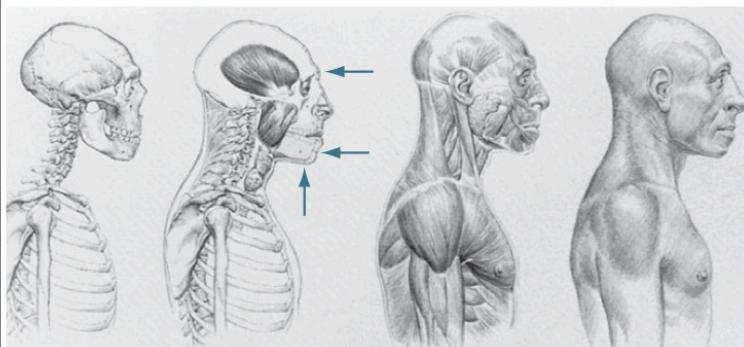
Evolution

- Big Picture
 - Multicellular life ~ 650 MYA
 - Mammals ~ 150 MYA
 - Homo Sapiens ~ 250 KYA

Research Methods

- Archeological...
- Biochemical & Genetic...
- Behavioral...

Psychology 465 - Human Neuropsychology - Spring 2017


118

Psychology 465 - Human Neuropsychology - Spring 2017

119

Archeological Research

- Fossil ages
- Habitat & behavior
- Morphological reconstruction

Psychology 465 - Human Neuropsychology - Spring 2017

120

Genetic & Biochemical

Genetics

- Human genome contains about 4 billion pairs of deoxyribonucleic acid (DNA)
- DNA is Transcribed into RNA
- RNA is Translated into Proteins
- Proteins
 - serve as structural components
 - function as enzymes to catalyze biochemical reactions
- Human DNA is grouped into 46 chromosomes
 - 23 pairs, one of each pair comes from each parent
 - 22 pairs in both males and females (autosomes)
 - 1 pair determines sex: either "XX" (females) or "XY" (males)

Psychology 465 - Human Neuropsychology - Spring 2017

122

Genetics : Species Differences

organism	estimated size (base pairs)	# genes	gene size	# chromosomes
Homo sapiens (human)	3.2 billion	~25,000	1 gene per 100,000 bases	46
Mus musculus (mouse)	2.6 billion	~25,000	1 gene per 100,000 bases	40
Drosophila melanogaster (fruit fly)	137 million	13,000	1 gene per 9,000 bases	8
Arabidopsis thaliana (plant)	100 million	25,000	1 gene per 4000 bases	10
Caenorhabditis elegans (roundworm)	97 million	19,000	1 gene per 5000 bases	12
Saccharomyces cerevisiae (yeast)	12.1 million	6000	1 gene per 2000 bases	32
Escherichia coli (bacteria)	4.6 million	3200	1 gene per 1400 bases	1
H. influenzae (bacteria)	1.8 million	1700	1 gene per 1000 bases	1

Psychology 465 - Human Neuropsychology - Spring 2017

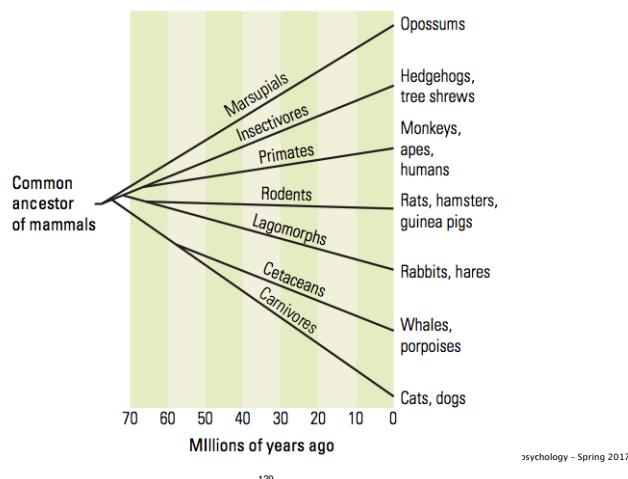
125

Genetics : Dominant & Recessive Genes

- DNA in chromosomes further subdivided into Genes
- Often, a given Gene codes for (or controls) a single biological Trait
- Often, Genes are dominant or recessive
- Eye color:
 - B: Brown: dominant
 - b: Blue: recessive
- What eye color will a person have?
- Children?

Genotype	Phenotype	Phenotype of Children
BB		
Bb		
bb		

Psychology 465 - Human Neuropsychology - Spring 2017


126

Psychology 465 - Human Neuropsychology - Spring 2017

127

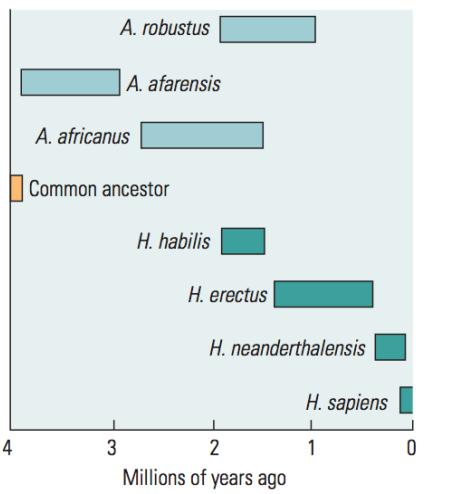
Mammalian Evolution

- Common mammalian ancestor ~ 80 MYA

129

Psychology 465 - Human Neuropsychology - Spring 2017

Primate Evolution

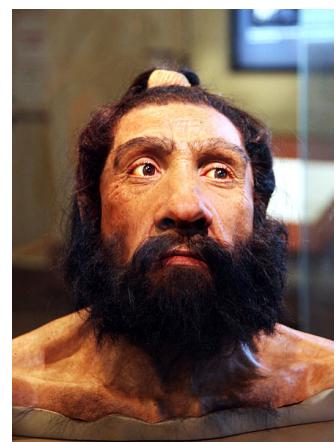

- Best research suggests *hominids* split from *apes* 5 to 8 million years ago
 - increased height
 - longer legs
 - bipedal (walk upright), ability to walk long distances
 - jaw/teeth changes : more varied diet
 - reduced sexual dimorphism
 - longer gestations
 - opposable thumbs / tool usage
 - brain size increased (300%)

Psychology 465 - Human Neuropsychology - Spring 2017

130

Hominid Evolution

- Exact relationships unknown
- Fossil record incomplete



131

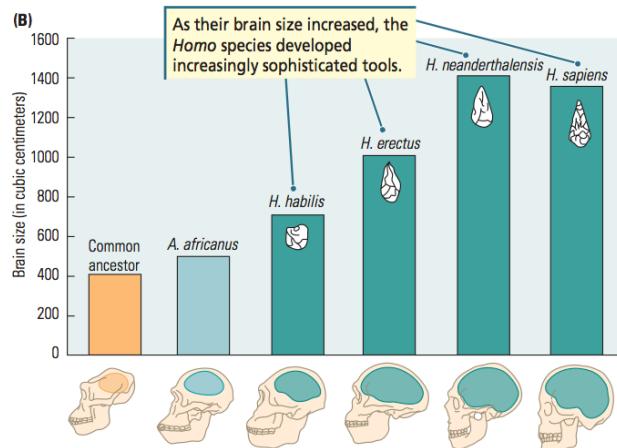
Psychology 465 - Human Neuropsychology - Spring 2017

Homo Neanderthalensis

- Unclear relationship with modern Homo Sapiens
- Genetic difference : as little as 0.15% (same as within - H Sapiens). Vs. chimpanzees : 2%-4%
- Some consider subspecies : Homo Sapiens Neanderthalensis)
- Age: perhaps 600,000 years ago to 30,000 years ago?
- Based on bones from over 400 skeletons

Psychology 465 - Human Neuropsychology - Spring 2017

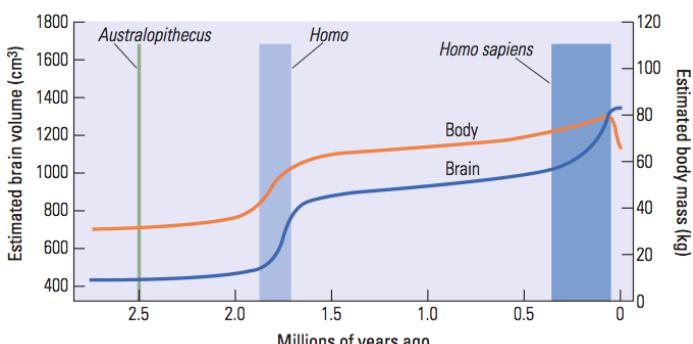
132


Homo

	H. Habilis "handy"	H. Erectus "upright"	H. Neanderthal- ensis "new man"	H. Sapiens "wise"
age	2 - 1.5 MYA	1.9 MYA - 0.5 MYA	0.5 MYA - ??? (20 KYA?)	0.25 MYA - present
tools	crude stone tools	better tools travel no cooking (?)	fire, cooking	iPhones
environment	africa scavenger?	worldwide	worldwide	worldwide
misc		bigger brain 600cc	biggest brain 1600cc	brain shrunk? 1400cc

Psychology 465 - Human Neuropsychology - Spring 2017

133


Dramatic Brain Size Increase

Psychology 465 - Human Neuropsychology - Spring 2017

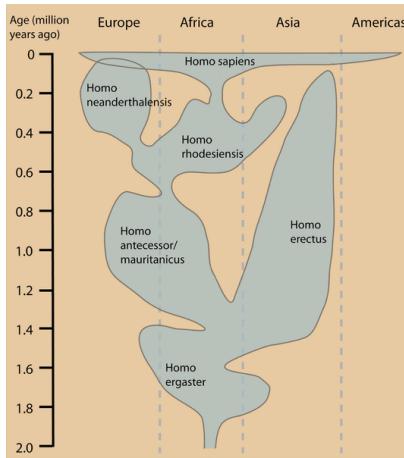
134

Dramatic Brain Size Increase

Psychology 465 - Human Neuropsychology - Spring 2017

135

Big brains : Pros & Cons


- Pros:
 - smarter
 - survival advantage
- Cons:
 - metabolic expense
 - birth canal limitations
 - neoteny : slower development
 - culture & birth as adaptation

Psychology 465 - Human Neuropsychology - Spring 2017

136

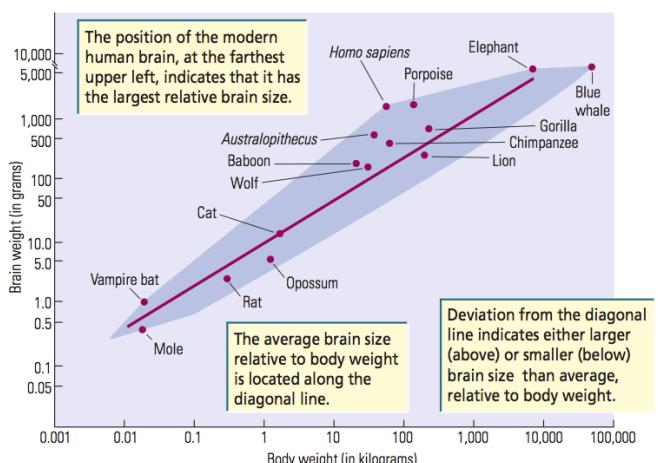
Homo Sapiens

- Homo Sapiens ~ 250,000 years ago?

Psychology 465 - Human Neuropsychology - Spring 2017

137

Encephalization Quotient (EQ)


- Roundworm *C. elegans*
 - 302 of 959 cells are neurons = 30% of body
 - Actual size:
- Blue whale
 - 15kg brain, but only 0.01%
- How to reconcile?
- EQ
 - ratio of actual brain size to “expected” brain size
 - Cat : “average” mammal : 1.0

Psychology 465 - Human Neuropsychology - Spring 2017

139

Brain weight vs. Body weight

Encephalization Quotient (EQ)

Species	Brain Volume (ml)	EQ
Rat	2	0.4
Cat	25	1
Rhesus monkey	106	2.1
Chimpanzee	440	2.5
Human	1350	7.3

Psychology 465 - Human Neuropsychology - Spring 2017

Cortical Changes

- Cortex grew faster than other brain areas
- Neoteny : adults retain juvenile features
 - small face
 - large brain to body ratio
 - big toe unrotated
 - development is slower
 - gives cortex more time to grow and mature?
- Adult humans are more similar to baby chimps than to adult chimps

Psychology 465 - Human Neuropsychology - Spring 2017

143

Cortical Organization

- Human brains : areas are functionally and anatomically separate
- larger number of “modules”
- Visual cortical areas
 - squirrel : 4
 - cat : 12
 - humans : 30 or more

Psychology 465 - Human Neuropsychology - Spring 2017

144

Cortical Structure

- Human brains are more specialized
- Development is slower
 - requires more parenting
- New skills/abilities can replace older ones, making room
 - e.g. color vision & depth perception reduce need for sense of smell

A girl goes nose-to-nose with a Neanderthal statue in Germany. Pan it

Ancient DNA research is increasingly revealing the genetic links between modern humans and our extinct ancestors, including Neanderthals and the mysterious Denisovans.

Credit: Neanderthal Museum (Mettmann, Germany)

[View full size image](#)

Neanderthal DNA

At least one-fifth of the Neanderthal genome may lurk within modern humans, influencing the skin, hair and diseases people have today, researchers say.

Although modern humans are the only surviving human lineage, other groups of early humans used to live on Earth. The closest extinct relatives of modern humans were the **Neanderthals**, who lived in Europe and Asia until [they went extinct about 40,000 years ago](#). The ancestors of modern humans diverged from those of Neanderthals between 550,000 and 765,000 years ago.

Recent findings revealed that [Neanderthals interbred with ancestors](#) of modern humans when modern humans began spreading out of Africa perhaps about 40,000 to 80,000 years ago, although some research suggests [the migration began earlier](#). About [1.5 to 2.1 percent of the DNA of anyone outside Africa](#) is Neanderthal in origin.

Psychology 465 - Human Neuropsychology - Spring 2017

145

Psychology 465 - Human Neuropsychology - Spring 2017

148

Brain Size vs. Intelligence

- Interspecies:
 - strong correlation
- Intraspecies:
 - weak correlation
- Controversy:
 - *The Mismeasure of Man* (Gold, 1981)
 - Faulty research, racist & nationalistic biases
 - Germans : “Germans have largest brains”
 - French : “French have largest brains”

Intelligence Tests

- IQ tests favor left hemisphere behaviors
- How many forms of Intelligence are there?
 - One? Spearman's g
 - Two? Verbal IQ, Nonverbal IQ?
 - Eight? Gardner's multiple intelligences

Psychology 465 - Human Neuropsychology - Spring 2017

149

Psychology 465 - Human Neuropsychology - Spring 2017

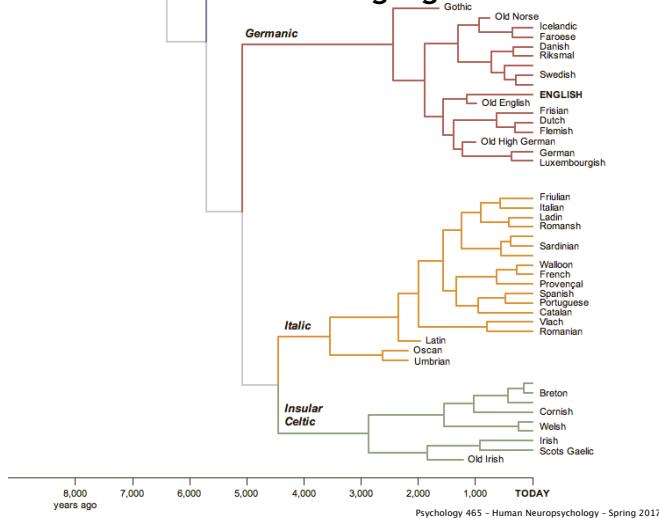
150

Gardner's 8 Intelligences

- logical-mathematical (*)
- verbal-linguistic (*)
- spatial (*)
- musical
- bodily-kinesthetic
- naturalist
- interpersonal
- intrapersonal

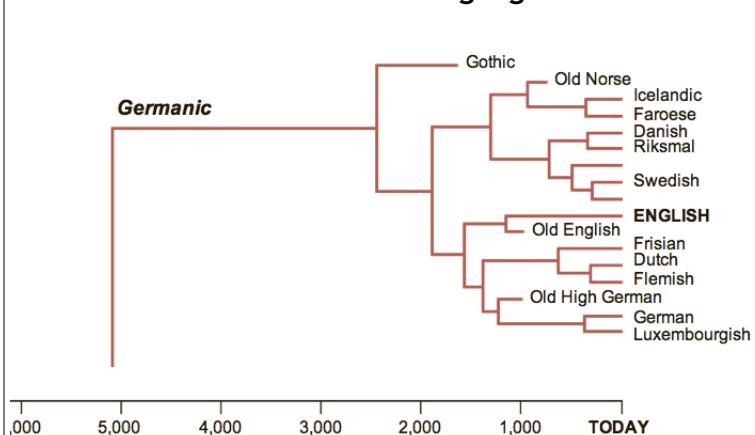
Psychology 465 - Human Neuropsychology - Spring 2017

151


Evolution of Culture

- 25,000 years ago: First art
- 9000 years ago : agriculture, animal husbandry
- 5000 years ago : written language

Psychology 465 - Human Neuropsychology - Spring 2017


152

Evolution of Language

153

Evolution of Language

154

Psychology 465 - Human Neuropsychology - Spring 2017

Sacks “A man of letters”

- Sacks (2010), *The Mind’s Eye*, p. 53-81
- Howard Engel
 - Canadian author of *Benny Cooperman* detective novels
- Symptoms
 - Newspaper looked to be in foreign language
 - verbal confusion (forgot name, address, relationship to son)
 - visual field blind spot
 - object agnosia
- Diagnosis
 - Prank?
 - Stroke
 - left hemisphere, occipital lobe injury
 - could still write

Psychology 465 - Human Neuropsychology - Spring 2017

156

Sacks “A man of letters”

- Stroke in 2000
- Recovery was very slow
- Still alexic
 - Takes a month to read what he could read in 2 hours
- Yet,
 - managed to publish another book “Memory Book” in 2005
 - Plot concerns Detective waking up in bed, alexic, with amnesia.

Psychology 465 - Human Neuropsychology - Spring 2017

157

Alexia sine Agraphia

- Alexia *without* Agraphia
- Ability to read : gone
- Ability to write : normal
- Can read one’s own writing? No
- Broca’s area:
 - motor images of words (how to say a word)
- Wernicke’s area:
 - auditory images of words (how to understand a word)
- Inferior temporal gyrus
 - Similar brain area for written words?
 - probably a disconnection syndrome similar to Conduction aphasia

Psychology 465 - Human Neuropsychology - Spring 2017

159

Evolution of Language : Wallace vs. Darwin

- Sacks (2010), *The Mind’s Eye*, p. 71
- Background:
 - human written language ~ 5000 years ago
 - human evolution ~ 250,000 years ago
 - enough time for evolution of speech, but not for biological evolution to enable for written language
- Wallace:
 - evidence of “divine gift”
- Darwin:
 - “I hope you have not murdered too completely your own and my child”
- Modern theory:
 - “Exaptation” - redeployment / recombination of existing visual/verbal skills

Psychology 465 - Human Neuropsychology - Spring 2017

160

Language Exaptation - Argument

- Brain can not come pre-loaded with object recognition
 - must be learned
 - (facial recognition: may be an exception)
 - Thus, brain has “object learning & categorization system”
- All written languages share geometrical similarities...with items seen in natural world
 - Written language re-uses brain’s visual object recognition system

Psychology 465 - Human Neuropsychology - Spring 2017

161

Review : 3 Language Impairments

- Broca’s Aphasia - Expressive Aphasia
 - motor images of words (how to say a word)
- Wernicke’s Aphasia - Receptive Aphasia
 - auditory images of words (how to understand a word)
 - “fluent” aphasia - speech output affected too
- Alexia without agraphia
 - visual word-form area (converting word images to word meaning)

Psychology 465 - Human Neuropsychology - Spring 2017

162