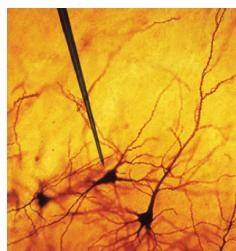


Week 4

- Tuesday
 - KW Chapter 4 : Neurons
 - KW Chapter 5 : Neurotransmitters
 - Midterm Study Guide
- Thursday
 - KW Chapter 10: Neocortex
 - Exercise 1: Brain Anatomy

Psychology 465 - Human Neuropsychology - Spring 2017

272


Chapter 4 : Neurons

Psychology 465 - Human Neuropsychology - Spring 2017

274

Case Report : Single Cell Recording

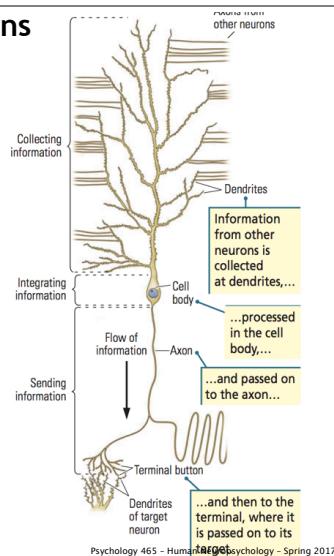
- History:
 - Subject with epilepsy volunteered for research study
 - Goal: find location where seizure originates and remove it
- Recordings of electrical potential on surface of skull failed to find location
- Single Cell recordings were used

Psychology 465 - Human Neuropsychology - Spring 2017

275

Grandmother Neurons?

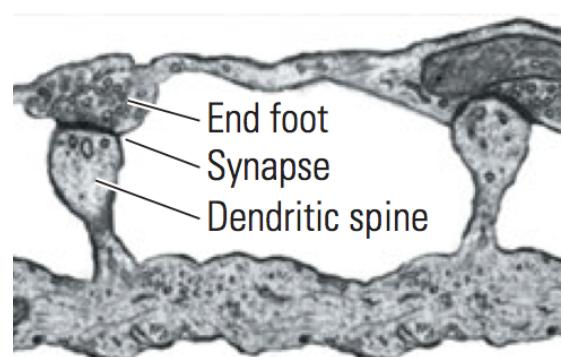
- Findings:
 - Some neurons responded to Picture of Halle Berry
 - To the letters “HALLE BERRY”
 - But not to pictures of other actresses, e.g. Michelle Pfeiffer



Psychology 465 - Human Neuropsychology - Spring 2017

276

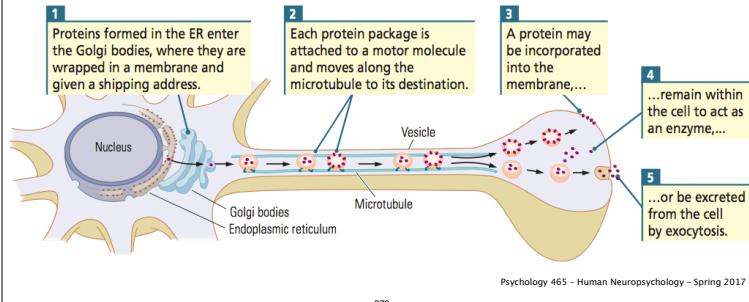
Neurons


- Function
 - information processing
- Structure
 - Dendrite
 - inputs
 - Cell Body
 - calculation
 - Axon
 - output

277

Synapse

- Gap between dendrite and axon

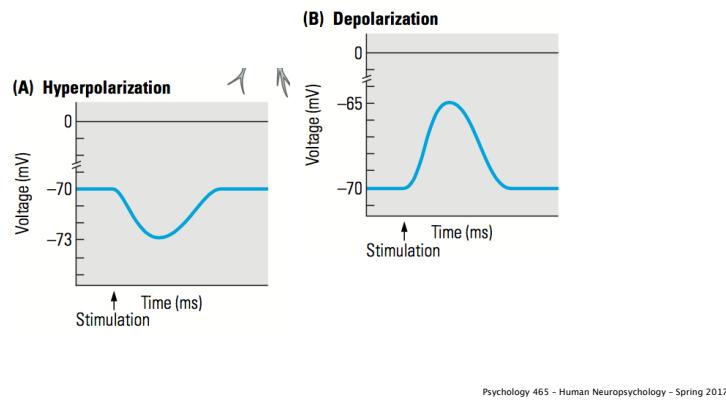


Psychology 465 - Human Neuropsychology - Spring 2017

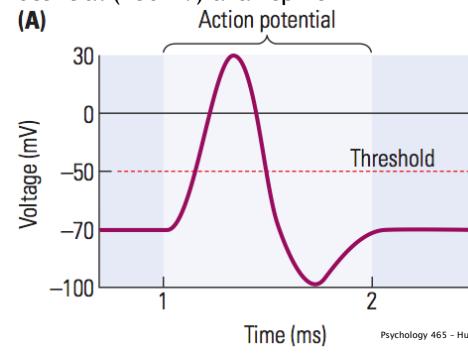
278


Vesicles and Neurotransmitters

- Neurotransmitters bridge the synapse between axon and dendrite
- Vesicles are created in cell body and hold neurotransmitters


The Resting Potential: -70mV

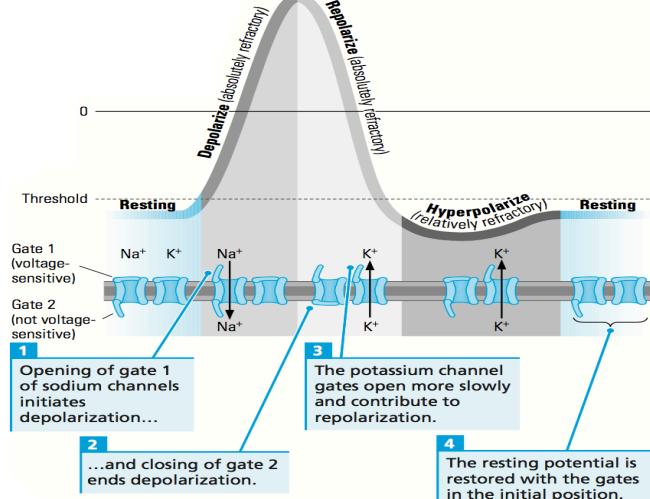
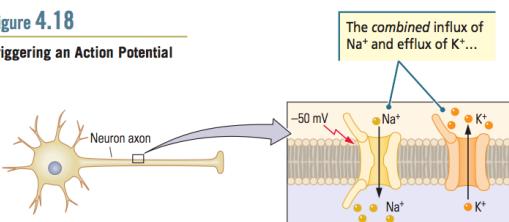
- Sodium / Potassium Pump (Na^+/K^+ Pump)


Polarization

- Hyperpolarization (more negative)
- Depolarization (more positive)

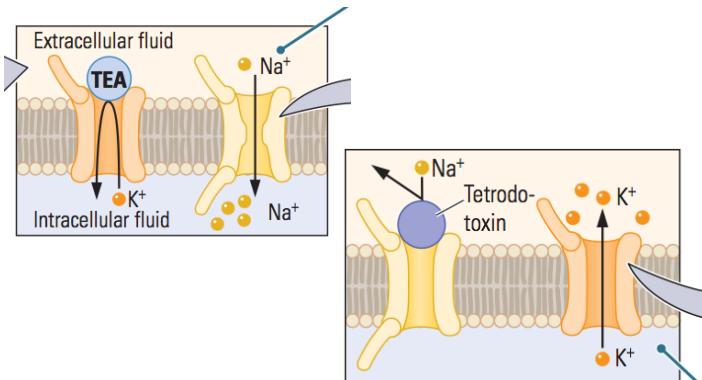
Axons are Electro-Chemical computers

- Electrical potential (Voltage)
- Resting voltage (-70mV)
- Stimulation from dendrites -> increases voltage
- Threshold (-50mV)
- Action Potential (+30mV) aka "spike"

The Action Potential

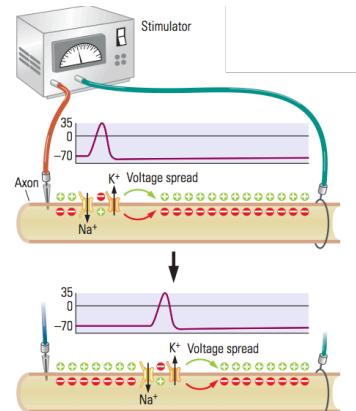
- Sodium (Na) ions enter cell, Potassium (K) ions exit
- Cell voltage changes


Figure 4.18

Triggering an Action Potential

Research methods

- TEA (tetra-ethyl-ammonium) blocks K channels
- Tetrodotoxin blocks Na channels

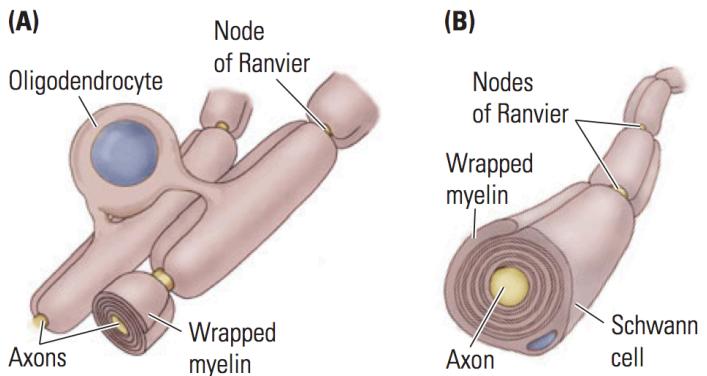

Psychology 465 - Human Neuropsychology - Spring 2017

285

The Nerve Impulse

- Action Potentials travel along the axon
- aka “propagation”

- Domino Analogy

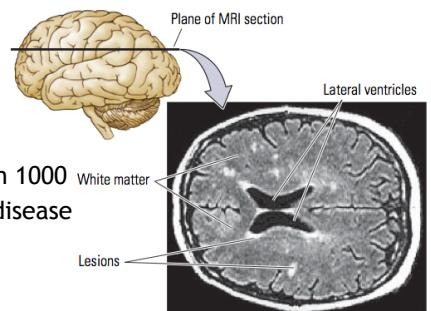


Psychology 465 - Human Neuropsychology - Spring 2017

286

Going Faster

- Nerve impulse speed related to axon size (bigger -> faster)
- Problem: too big = too crowded. Solution: Myelination
 - “saltatory conduction” (to leap)

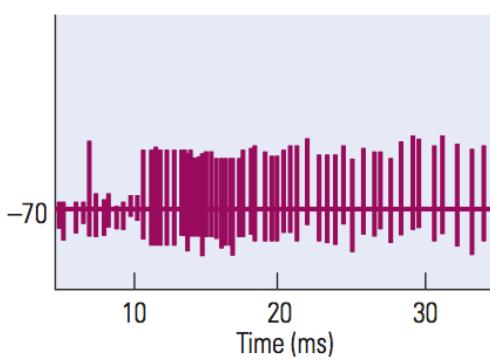


Psychology 465 - Human Neuropsychology - Spring 2017

287

Disease: Multiple Sclerosis

- Sclerosis = *hardness*
- MS : myelin is attacked, causing inflammation and damage / destruction of myelin
- Unpredictable / Disabling
- Remissions & Relapses
- often mis-diagnosed
- Epidemiology
 - typically age 15-40
 - 2x more F than M
 - prevalence about 1 in 1000
- Possibly auto-immune disease
- Lesions visible on MRI

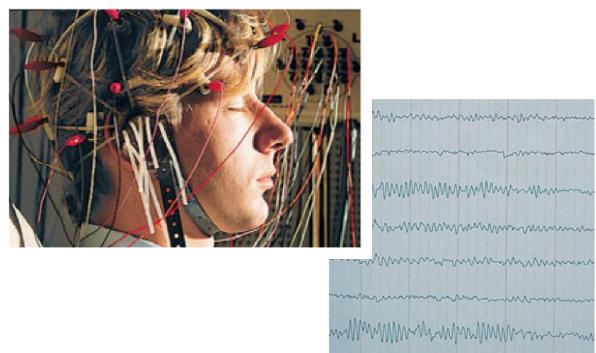


Psychology 465 - Human Neuropsychology - Spring 2017

288

Information is coded in Spike Trains

- Neurons can have multiple action potentials
- Information is coded in timing & pattern of spikes

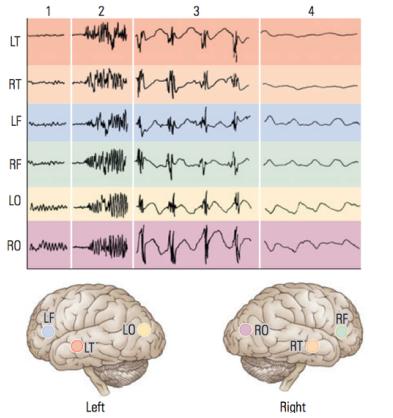


Psychology 465 - Human Neuropsychology - Spring 2017

289

Multiple neurons are synchronized

- Waves and patterns of thousands of neurons firing together
- Strong enough that voltage can be detected on scalp
- Electro Encephalograph (EEG)


Psychology 465 - Human Neuropsychology - Spring 2017

290

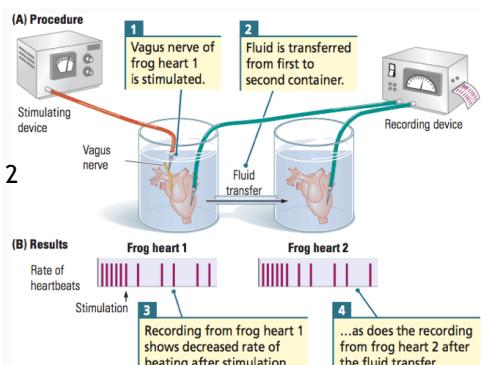
Epilepsy


- Seizure

- large groups of neurons firing all at once
- out of control
- pattern spreads
- can involve entire brain

- Key

- 1=pre
- 2=onset
- 3=clonic
- 4=coma


291

292

Psychology 465 - Human Neuropsychology - Spring 2017

Otto Loewi's Experiment

- Frog hearts in bottles
- Stimulate vagus nerve of heart 1
 - heart 1 slows down
- Pass fluid to heart 2
 - heart 2 slows down
- Conclusion : must be chemical
- Acetylcholine

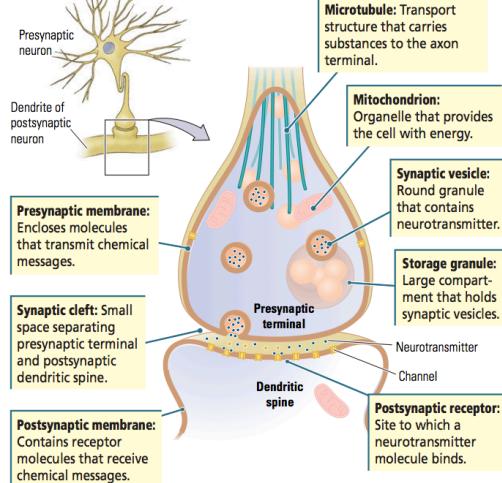
293

294

Psychology 465 - Human Neuropsychology - Spring 2017

Neurons and neurotransmitters

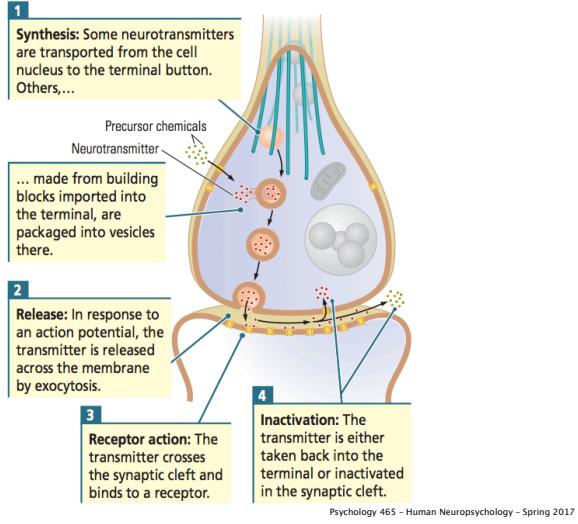
- Neurons generally release only 1 specific NT
- Neurons are named for the NT they release
 - Neurons that release Acetylcholine
 - cholinergic
- Some NTs function in both CNS and PNS
- Some don't
 - epinephrine : PNS
 - nor-epinephrine : CNS
- Hundreds of NTs
- NTs can be excitatory OR inhibitory depending on specific neuron
 - but more typically have a single action (+ or -)


NT Synthesis

- Two classes
 - Large Proteins
 - synthesized in cell body from DNA/RNA
 - transported to axon terminal in vesicles
 - slower acting
 - Smaller molecules
 - synthesized from nutrients
 - absorbed directly through cell wall
 - faster acting

Psychology 465 - Human Neuropsychology - Spring 2017

295


The Synapse

296

Psychology 465 - Human Neuropsychology - Spring 2017

Neurotransmission

297

Neurotransmission

- Synthesis
- Release
- Receptor Action
 - depolarize (excitation)
 - hyper-polarize (inhibition)
 - creates new synapses
 - other cascaded processes
- Inactivation
 - Reuptake
 - Degradation
- Autoreceptors
 - pre-synaptic cell may also be affected

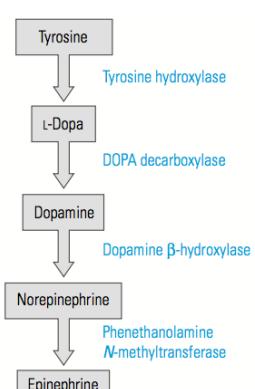
Psychology 465 - Human Neuropsychology - Spring 2017

298

Categories of Neurotransmitters

- More than 100
- More than one NT may be in single vesicle
- Small-molecules
 - organic chemicals
- Neuropeptides
 - short amino acid chains
- Transmitter gasses
 - tiny water-soluble gas molecules such as NO and CO

Psychology 465 - Human Neuropsychology - Spring 2017

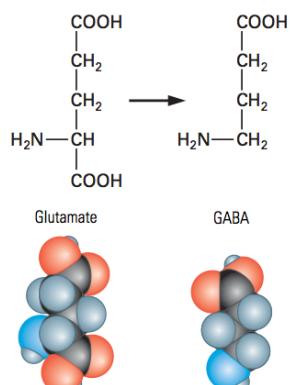

299

Small Molecule Neurotransmitters

- Acetylcholine
- Amines
 - Dopamine (DA)
 - Norepinephrine (NE)
 - Epinephrine (EP)
 - Serotonin (5HT)
- Amino Acids
 - Glutamate (Glu)
 - Gamma-aminobutyric acid (GABA)
 - Glycine (Gly)
 - Histamine (H)

Psychology 465 - Human Neuropsychology - Spring 2017

300


NTs and Behavior in PNS

- PNS
- SNS
 - motor neurons: cholinergic (ACh), excitatory, produce muscle contractions
- ANS
 - Sympathetic: Fight or Flight
 - epinephrine (EP) aka Adrenaline
 - Parasympathetic : Rest and Digest
 - acetylcholine (ACh)

301

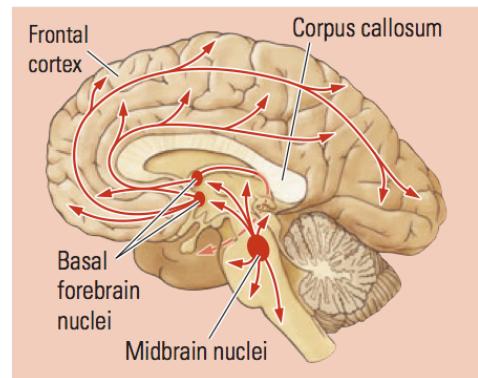
NTs and Behavior in CNS

- Glutamate (Glu)
 - major excitatory NT
- Gamma-aminobutyric acid (GABA)
 - major inhibitory NT

Psychology 465 - Human Neuropsychology - Spring 2017

302

CNS Activating Systems

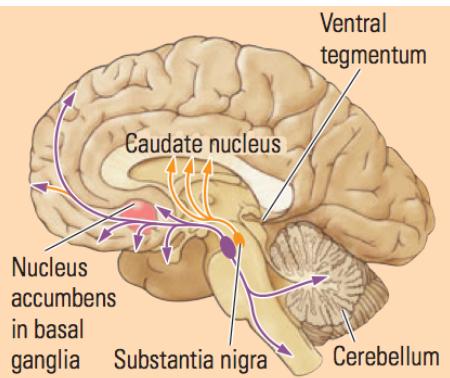

- In brain, NT systems have large-scale effects
- Major Ones:
 - Cholinergic
 - Dopaminergic
 - Noradrenergic
 - Serotonergic
- Functions are complex, interlinked
- Generally not possible to have 1:1 relationship between system and disease/disorder

303

Psychology 465 - Human Neuropsychology - Spring 2017

Cholinergic Activating System

- Functions:
 - Waking EEG
 - Memory
- Damage/Disease:
 - Alzheimer's Disease

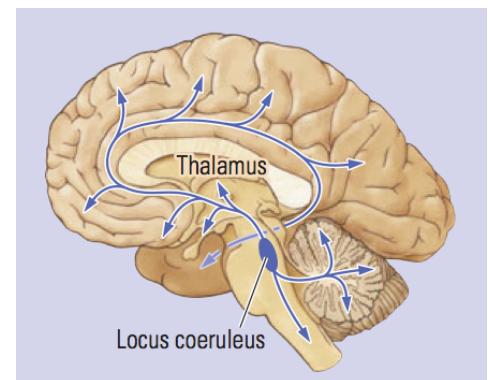


304

Psychology 465 - Human Neuropsychology - Spring 2017

Dopaminergic Activating System

- Nigrostriatal
 - Functions:
 - normal motor behavior
 - Damage/Disease:
 - Parkinson's
- Mesolimbic
 - Functions:
 - reward & pleasure
 - Damage/Disease:
 - addiction
 - schizophrenia

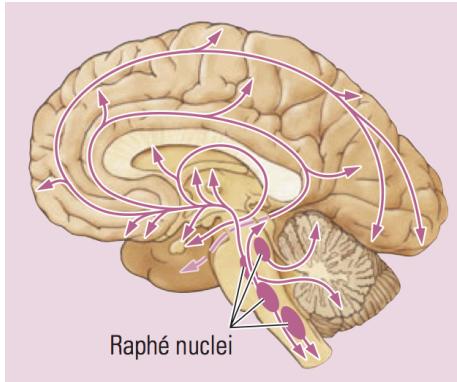


305

Psychology 465 - Human Neuropsychology - Spring 2017

Noradrenergic Activating System

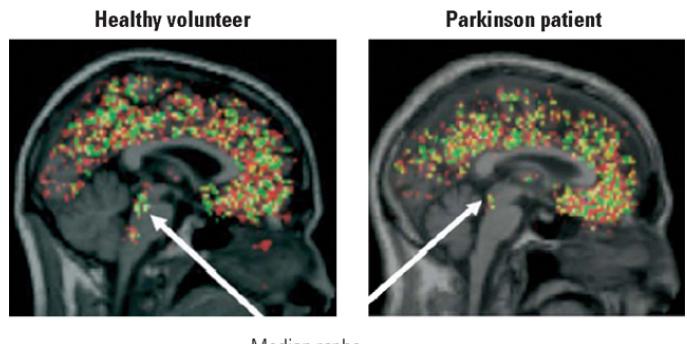
- Functions:
 - emotional tone
 - cognitive functioning
- Damage/Disease:
 - impaired thinking
 - depression



306

Psychology 465 - Human Neuropsychology - Spring 2017

Serotonergic Activating System


- Functions:
 - waking EEG
 - resistance to stress
- Damage/Disease:
 - depression
 - anxiety
 - OCD
 - tics
 - schizophrenia

307

Psychology 465 - Human Neuropsychology - Spring 2017

Serotonergic Activating System

Median raphe

Brooks, D.J., Piccini, P. Imaging in Parkinson's disease. The role of monoamines in behavior, *Biological Psychiatry*, 59:908–918, 2006
© Elsevier.

308

Psychology 465 - Human Neuropsychology - Spring 2017

Chapter 10 : Neocortical Function

Psychology 465 - Human Neuropsychology - Spring 2017

365

Case Report : Hemispherectomy

- AR, an 11 year old boy began developing seizures
 - right-sided weakness, difficulty talking (dysphasia)
- Over next six years, hospitalized many times
 - Right handed -> left handed
 - by age 15, IQ dropped 30 points (from 100 to 70)
 - by age 17, he was not testable due to emotional & language problems
- Dx : Rasmussen's Encephalitis
- Tx : removal of most of left hemisphere

Psychology 465 - Human Neuropsychology - Spring 2017

366

Case Report : Hemispherectomy

- Note: image is from another patient with a Right-hemispherectomy

Psychology 465 - Human Neuropsychology - Spring 2017

367

Case Report : Hemispherectomy

- Recover post hemispherectomy
- 10 years later
 - oral language skills : vastly improved (to average)
 - unable to read or write
 - motor skills : improved
 - could walk (with limp)
 - could raise right arm to shoulder level and grasp objects with right hand

Psychology 465 - Human Neuropsychology - Spring 2017

368

How did AR recover?

- Levels of Function
 - Subcortical areas manage, direct, and control cortical areas
- Brain Plasticity
 - brain can respond to injury / damage / dysfunction
 - in AR's case: dysfunctional LH blocking language functions in RH. With LH removed, RH could work better and grow back some functions.

Psychology 465 - Human Neuropsychology - Spring 2017

369

Levels of Function

Level	Function
Cortex	Control and Intention: Sequences of voluntary movements. Cognitive maps, relationships between objects, emotional values, motivation, long term planning
Basal Ganglia	Self Maintenance: Coordinates voluntary and automatic movements for self-preservation (simple eating, drinking, sex)
Diencephalon hypothalamus thalamus	Affect and Motivation: Voluntary movements, but without purpose. Integrated emotional behavior, but mis-directed. Thermoregulation.
Midbrain	Spontaneous Movement: Simple motor responses to visual/auditory stimuli. Automatic behavior (grooming). Stand, walk, turn, jump in response to stimuli.
Hindbrain	Postural Support: hiss, bite, growl, chew, lick in response to stimuli. Standing, postural reflexes, sleepwalking.
Spinal cord	Reflexes: stretch, withdraw, scratch in response to stimuli

Psychology 465 - Human Neuropsychology - Spring 2017

370

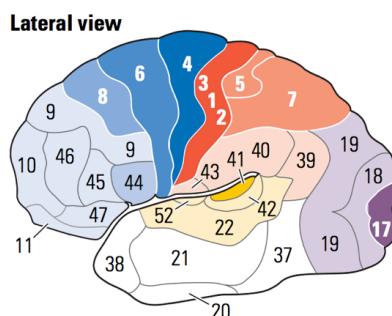
Decorticate Rats

- Decorticate rats behave in many ways normally
 - eat, drink
 - can run simple mazes
- Untrained observers have difficulty telling them apart from a rat with a cortex
- Decorticate rats
 - don't build nests
 - do not hoard food
 - can't do skilled movements with tongue & mouth
 - can do simple learning

371

Psychology 465 - Human Neuropsychology - Spring 2017

Cortex - what is it good for?


- Conclusions : Neocortex not necessary for basic survival
- Neocortex is a "new layer" evolutionarily developed
- Manages complex and new combinations of behavior

372

Psychology 465 - Human Neuropsychology - Spring 2017

Cortical Mapping Ideas

- Brodmann's Map
- Primary/Secondary/ Tertiary
- Developmental
- Primordial zone
 - myelinates early : part of motor & somatosensory cortex
- Secondary zone (borders primordial zone)
 - myelinates next
- Tertiary zone (association)

Cortical Columns, Spots & Stripes

- Cortical neurons function in narrow columns
- Up to 300 neurons in 1mm wide strip
- “Column” or “Module”
- How determined?
 - radioactive staining - inject tagged AA into eyeball
- Not widespread agreement on definition or function

(A) Ocular dominance columns in area 17

(C) Stripes in area 18

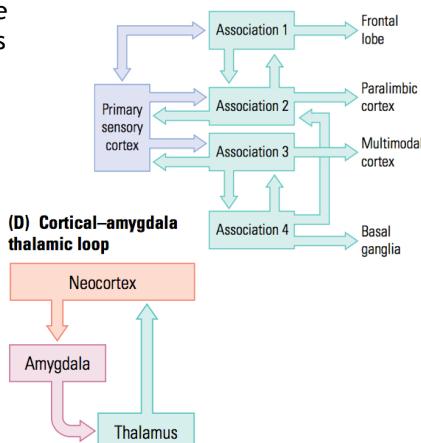
(B) Blobs in area 17

(D) Barrels in area SI

Psychology 465 - Human Neuropsychology - Spring 2017

377

Representation & Mapping


- Early views
 - brain areas have mapping to specific topics
 - e.g. motor cortex maps to body muscles
 - sensory cortex maps to skin receptors
- Later research
 - found multiple maps in many parts of the brain
 - e.g. monkeys: approx 30 areas mapping to vision
 - found multimodal / polymodal areas
 - combining sensory / motor information
 - found maps are widely distributed / general (not as localized as thought)
- Conclusion:
 - # of maps --> amount of “intelligence” ?

Psychology 465 - Human Neuropsychology - Spring 2017

378

Cortical Systems & Subcortical Loops

- Cortex connections can be divided into 5 major areas
- Subcortical connections form loops between subcortical and cortex (6 major ones discovered)

Psychology 465 - Human Neuropsychology - Spring 2017

379

The Binding Problem

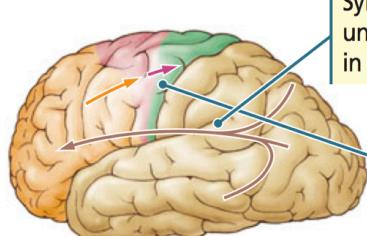
- How does the brain integrate sensory perception into a *gestalt* (a “whole”)
- Possible solutions
 - A top-level cortical area binds them together
 - problem - this doesn't seem to exist
 - All areas are interconnected and share information
 - problem - not all areas are connected
 - Intracortical networks among subsets of regions
 - may actually be how the brain works?
 - called “integration”
- Still not really solved

Psychology 465 - Human Neuropsychology - Spring 2017

380

A Hierarchical Model : Structure

- Alexander Luria's model
- Cortex : two parts
 - posterior : sensory
 - anterior : motor
- Each part has 3 zones:
 - primary
 - secondary
 - tertiary (association)


Psychology 465 - Human Neuropsychology - Spring 2017

381

A Hierarchical Model : Function

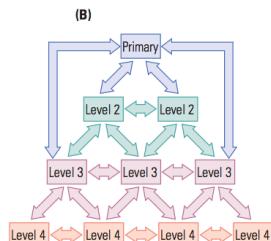
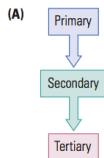
- Processing is serial:
 - posterior (1,2,3) --> anterior (3,2,1)

(B) Motor unit

3

Symbolic processes from the sensory unit are translated into intentions in the tertiary motor zones...

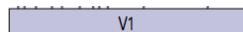
4



...and then into patterns of action in the secondary and primary motor zones.

Psychology 465 - Human Neuropsychology - Spring 2017

382

Luria's model : accurate?


- Problems
 - serial connections may not exist
 - subcortical connections bypass cortex
- Newer models:
 - still hierarchy, but some levels bypass each other
 - includes parallel processing.
- “Distributed Hierarchy”

Psychology 465 - Human Neuropsychology - Spring 2017

383

Modern Distributed Hierarchical Models

Psychology 465 - Human Neuropsychology - Spring 2017

384

Are Humans Special?

- Do Human brains have any unique properties?
- Biological, Psychological and Theological Question
- Human brains have
 - High density of neurons with fast conduction velocity
 - --> increased processing capability
 - Von Economo Neurons
 - large bipolar neurons in cingulate cortex (also seen in great apes, but to a lesser extent)
 - develop around age 4
 - might hold “theory of mind”?
 - defective in Autism?

Psychology 465 - Human Neuropsychology - Spring 2017

385