

Week 5

- Tuesday:
 - KW Chapter 7 : Neuroimaging
 - Review for Midterm
- Thursday:
 - Midterm Exam

Psychology 465 - Human Neuropsychology - Spring 2017

417

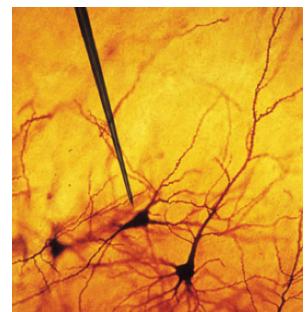
Chapter 7 : Imaging The Brain

- Note: in earlier editions of KW this is Chapter 6

Psychology 465 - Human Neuropsychology - Spring 2017

418

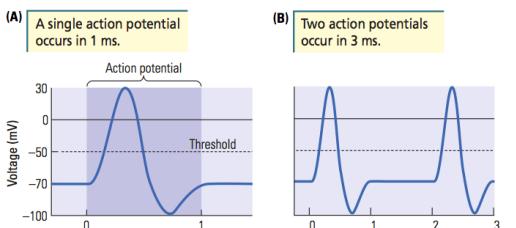
Brain Imaging Techniques : Overview

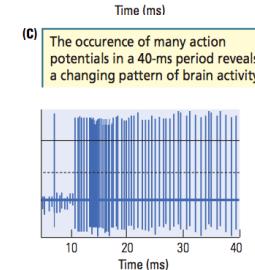

- Electrical
 - Recording
 - Single Cell, Multiple Cell
 - EEG, ERP
 - Stimulation
- Magnetic
 - Recording - MEG
 - Stimulation - TMS
- Structural
 - X-ray, MRI
- Dynamic / Functional electrical activity
 - metabolism / glucose
 - blood flow, other

Psychology 465 - Human Neuropsychology - Spring 2017

419

Single-Cell recording


- Typically done in non-human animals
- Single electrode recording
- Arrays of electrodes
 - record from multiple cells


Psychology 465 - Human Neuropsychology - Spring 2017

420

Action potential trains

- Major question: How does the pattern of spikes encode information?

421

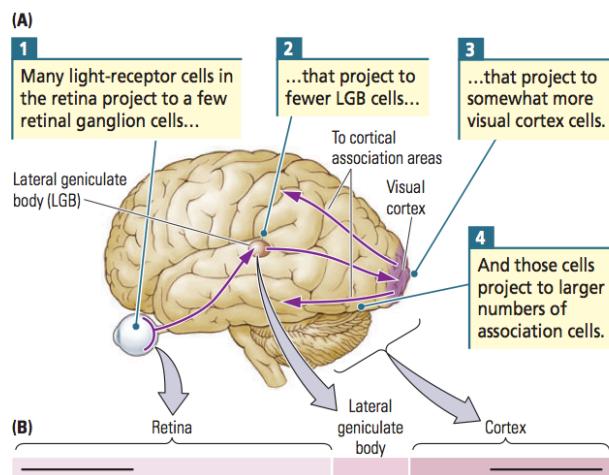
Neuronal Code

- Patterns of neuronal firing
 - steady rate (e.g. "heartbeat" or time counter)
 - bursts, associated with behavior
 - rarely fire at all
 - daily, monthly, or yearly patterns
- How does the pattern of action potentials encode information?
- Example: Pain fibers in the PNS use frequency encoding:
 - low frequency : mild pain
 - high frequency : severe pain
- Example: color sensitive neurons
 - medium frequency : no color
 - low frequency : green
 - high frequency : red

Psychology 465 - Human Neuropsychology - Spring 2017

422

Psychology 465 - Human Neuropsychology - Spring 2017


Findings re: Neuronal Code

- Cortical neurons
 - fire about 3x/minute, up to 10x/minute when excited
- Adjacent Neurons may have completely different function
 - e.g. Broca's area: neuron for word perception next to one for word production
- Learning :
 - Newly learned information/skills - requires lots of neurons
 - Old information : more sparsely encoded

Psychology 465 - Human Neuropsychology - Spring 2017

423

Levels of Processing / # of neurons

ing 2017

424

Levels of Processing / # of neurons

- Sensory input - few to many to few neurons
 - Retina
 - photo-sensitive cells : many, capture low level features (Light & Dark)
 - >
 - ganglion cells : fewer
 - >
 - LGB cells : even fewer
 - >
 - A17 (V1) Primary visual cortex : more cells, respond to visual features (line orientation)
 - >
 - association cortex : many more cells
 - "Grandmother!"

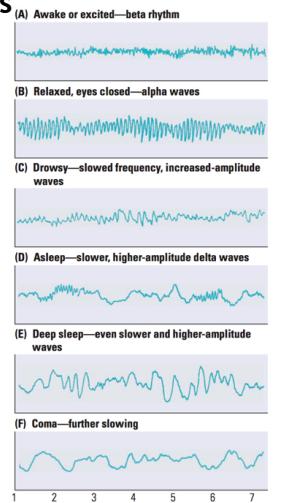
Psychology 465 - Human Neuropsychology - Spring 2017

425

Multiple Neuron Recording : EEG

- Neurons fire in synchrony
- Tiny voltages + many many neurons = measurable voltage on the scalp
- EEG : Electroencephalogram

2
Polygraph electrodes are connected to magnets, which are connected to pens...

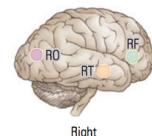
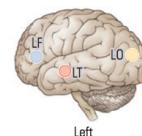
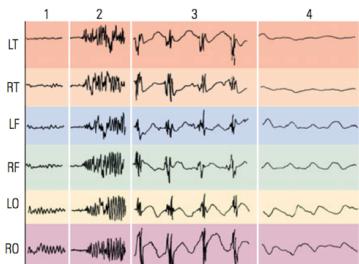


Psychology 465 - Human Neuropsychology - Spring 2017

426

EEG Patterns

- Majority of EEG signal comes from neurons in Layers V and VI
- Pacemaker cells keep these cells synchronized
- Frequency & pattern :
- Faster, smaller, & more complicated with increasing arousal
- Slower & larger amplitude in sleep, coma

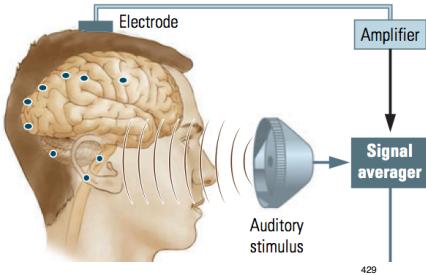




Psychology 465 - Human Neuropsychology - Spring 2017

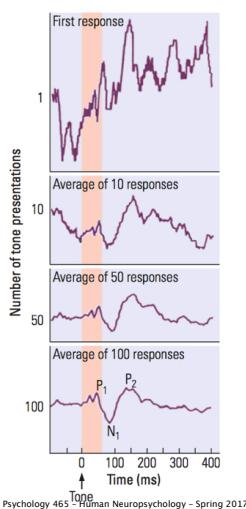
427

Epilepsy

- Seizure
 - large groups of neurons firing all at once
 - out of control
 - pattern spreads
 - can involve entire brain
- Key
 - 1=pre
 - 2=onset
 - 3=clonic
 - 4=coma
- Note largest spikes in RO area - source of seizure?

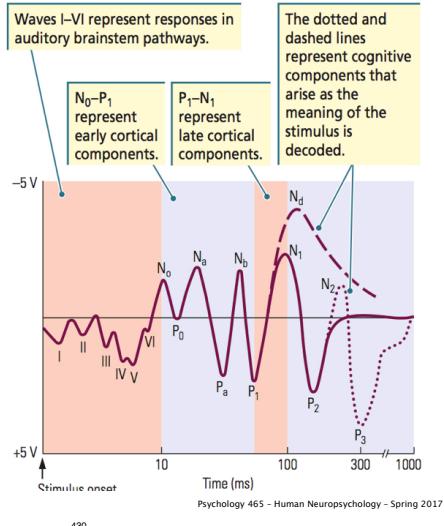


Psychology 465 - Human Neuropsychology - Spring 2017


428

ERP - Event-Related-Potentials

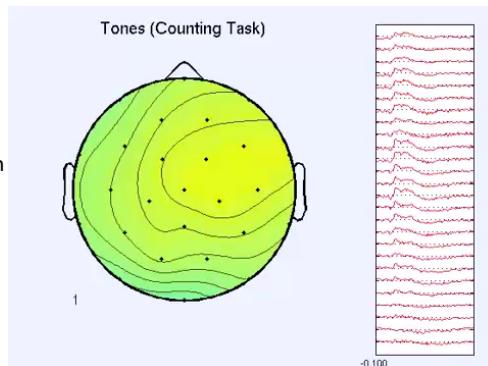
- Can you see “thinking” by watching EEG?
- In a single recording: No, it’s too noisy
- By statistically averaging multiple events, a pattern emerges


429

Psychology 465 - Human Neuropsychology - Spring 2017

Common ERP patterns

- (P)positive and (N)egative waves
- Early waves in brainstem (I, II, III, IV, V, VI)
- Later waves in cortex (N0, P0...N3, P3)
- Image: ERP in Parietal Cortex in response to spoken word



430

Psychology 465 - Human Neuropsychology - Spring 2017

Multi-electrode ERP

- An individual's event-related potentials (ERPs) to tones in a simple tone counting task. Right column plots ERPs at 26 scalp electrodes (negative is up). Voltage is represented in color on the cartoon head (cool=negative, warm=positive). Time (in seconds) is printed at the bottom of the column of ERPs. Most prominent ERP deflection is the auditory N1 that peaks around 100 ms post-stimulus.

431

Psychology 465 - Human Neuropsychology - Spring 2017

MEG : magnetoencephalography

- Maxwell-Faraday equation - relates change in Electrical potential (voltage) “E-field” to change in magnetic field “B-field”

$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
- Electrical voltages : can be measured with cheap equipment
- Magnetic fields : measured with fancy equipment
 - SQUIDS : Superconducting quantum interference device
 - Requires liquid helium
 - \$\$\$
- Pro: higher resolution

432

Psychology 465 - Human Neuropsychology - Spring 2017

Brain Stimulation

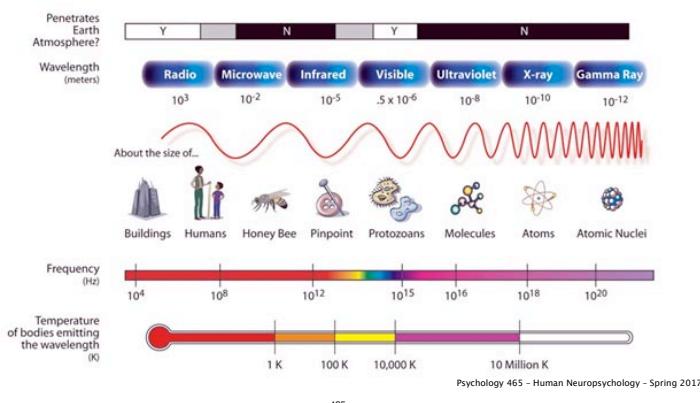
- Electrical
 - Surface
 - often used in brain surgery
- Intracranial
 - DBS - Deep Brain Stimulation - mostly experimental, used for Parkinson's treatment
 - Very invasive - risks of infection, etc.
- Magnetic
 - TMS : transcranial magnetic stimulation

433

Psychology 465 - Human Neuropsychology - Spring 2017

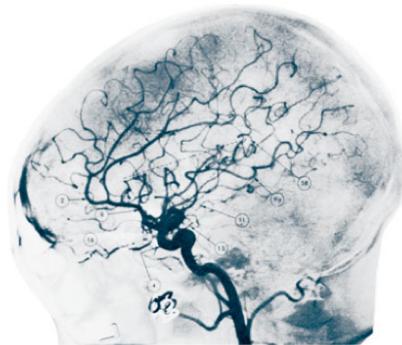
Transcranial Magnetic Stimulation

- TMS - new, still being researched
- very strong magnetic fields are created in the brain
- magnetic fields cause electrical currents in brain tissue
- mechanism - unknown


434

Psychology 465 - Human Neuropsychology - Spring 2017

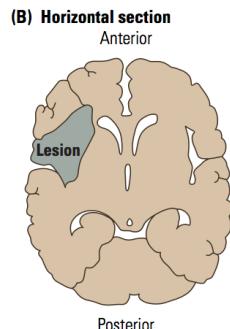
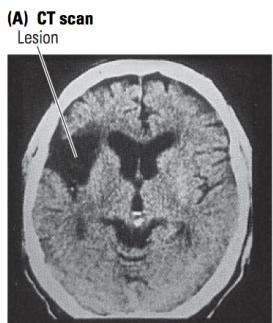
X-Ray techniques


- X-rays : very high frequency (small wavelength) waves
- Ionizing!

THE ELECTROMAGNETIC SPECTRUM

X-Ray Procedures

- Conventional - simple xray of the skull - shows gross features
- Contrast techniques
 - Pneumoencephalography - *air-brain-graph* - inject air into CSF for contrast
 - Angiography - inject material into blood which blocks x-rays
- CT

Psychology 465 - Human Neuropsychology - Spring 2017

436

CT : Computed Tomography

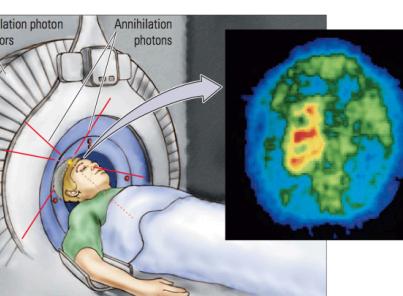
- X-rays are sent through head from all angles
- Computer reconstructs data into 3-D image
- Aka "Computed Axial Tomography" or CAT scan

Psychology 465 - Human Neuropsychology - Spring 2017

437

Neuroimaging

- Visualizing the brain *in vivo*
- CT : Computed Tomography
 - x-ray
 - cheap(er), quick
 - low resolution

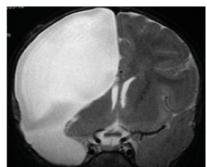


Psychology 465 - Human Neuropsychology - Spring 2017

438

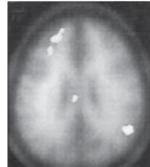
PET Scanner

A small amount of radioactively labeled water is injected into a subject. Active areas of the brain use more blood and thus have more radioactive labels.



Psychology 465 - Human Neuropsychology - Spring 2017

439


MRI

- MRI : Magnetic Resonance Imaging
 - magnetic fields
 - detailed
 - expensive
- fMRI : Functional MRI
 - metabolism in real time

(B) fMRI responses

Normal readers

Dyslexics

Psychology 465 - Human Neuropsychology - Spring 2017

440

MR - Spectroscopy

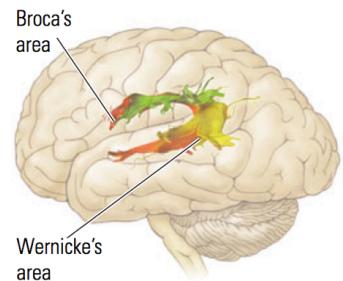
- MRI normally images hydrogen molecules in water (80% of the brain) - Can't see other 20%
- MR Spectroscopy - uses different RF frequency to image non-water chemicals
- Experimental
 - e.g. can detect choline (precursor to Acetylcholine)

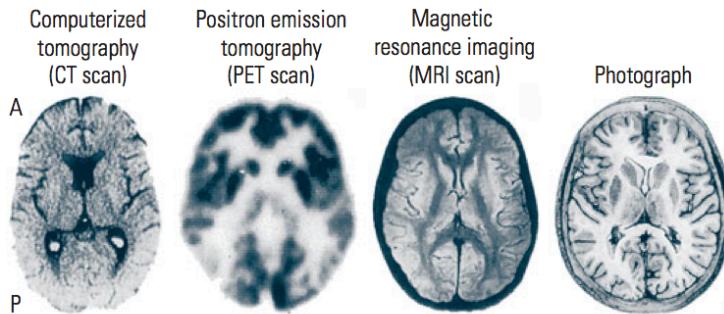
441

Psychology 465 - Human Neuropsychology - Spring 2017

MR - DTI - Diffusion Tensor Imaging

- measures directional movements of H_2O molecules
- in ventricles & cell bodies: water molecules are random
- in nerve fibers, water moves along axis of fiber




Figure 6.24

Diffusion Tensor Images of the Language Pathways Connecting Broca's and Wernicke's Regions

442

Psychology 465 - Human Neuropsychology - Spring 2017

Comparison of Neuroimaging images

443

Psychology 465 - Human Neuropsychology - Spring 2017

Imaging Comparison

Kind	Time	Resolution	Cost	Risk	Detect Function?
Xray - Conventional	fast	very low	\$	💀	✗
Xray angiography	slow	high	\$\$	💀💀	✗
Xray - CAT	medium	medium	\$\$	💀💀	✗
PET	slow	low	\$\$\$	💀💀	✓
MRI	slow	high	\$\$		✗
fMRI	slow	high	\$\$\$		✓

444

Psychology 465 - Human Neuropsychology - Spring 2017